Matematisk-fysiske Skrifter udgivet af
Det Kongelige Danske Videnskabernes Selskab Bind 3, nr. 2
Mat. Fys. Skr. Dan. Vid. Selsk. 3, no. 2 (1965)

BAYESIAN SINGLE SAMPLING attribute plans For discrete PRIOR DISTRIBUTIONS

A. HALD

København 1965

Det Kongelige Danske Videnskabernes Selskab udgiver følgende publikationsrækker:

The Royal Danish Academy of Sciences and Letters issues the following series of publications:

Bibliographical Abbreviation

Oversigt over Selskabets Virksomhed (8°)
(Annual in Danish)
Historisk-filosofiske Meddelelser (8°)
Historisk-fllosofiske Skrifter (4) (History, Philology, Philosophy, Archeology, Art History)

Matematisk-fysiske Meddelelser (8°) Matematisk-fysiske Skrifter (4°) (Mathematics, Physics, Chemistry, Astronomy, Geology)

Biologiske Meddelelser (8°)
Biologiske Skrifter (4°)
(Botany, Zoology, General Biology)

Overs. Dan. Vid. Selsk.

Hist. Filos. Medd. Dan. Vid. Selsk. Hist. Filos. Skr. Dan. Vid. Selsk.

Mat. Fys. Medd. Dan. Vid. Selsk. Mat. Fys. Skr. Dan. Vid. Selsk.

Biol. Medd. Dan. Vid. Selsk. Biol. Skr. Dan. Vid. Selsk.

Selskabets sekretariat og postadresse: Dantes Plads 5, København V.
The address of the secretariate of the Academy is:
Det Kongelige Danske Videnskabernes Selskab, Dantes Plads 5, Köbenhavn V, Denmark.

Selskabets kommissionær: Ejnar Munksgaard's Forlag, Nørregade 6, København K.

The publications are sold by the agent of the Academy:
Ejnar Munksgaard, Publishers, 6 Nörregade, Köbenhavn K, Denmark.

Matematisk-fysiske Skrifter
 udgivet af

Det Kongelige Danske Videnskabernes Selskab
Bind 3, nr. 2
Mat. Fys. Skr. Dan. Vid. Selsk. 3, no. 2 (1965)

Bayesian single sampling attribute plans For discrete PRIOR DISTRIBUTIONS

BY
A. HALD

København 1965
Kommissionær: Ejnar Munksgaard

Synopsis

The paper gives a rather complete tabulation and discussion of properties of a system of single sampling attribute plans obtained by minimizing average costs under the assumptions that costs are linear in p, the fraction defective, and that the distribution of lot quality is a double binomial distribution. The optimum sampling plan (n, c) depends on 6 parameters $\left(N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ where N denotes lot size, $\left(p_{r}, p_{s}\right)$ are suitably normalized cost parameters, and $\left(p_{1}, p_{2}, w_{2}\right)$ are the parameters of the prior distribution. It may be shown, however, that the weights combine with the p 's in such a way that only 5 independent parameters are left.

A procedure to obtain the exact solution of the problem has been developed in a previous paper and this procedure is used for computing a set of master tables in which $p_{r}=p_{s}=0.01$ and $0.10, w_{2}=0.05$, (p_{1}, p_{2}) take on suitably chosen values in relation to the value of p_{r}, and $1 \leqq N \leqq 200,000$.

The properties of the optimum plans are studied, and simple conversion formulas are derived which makes it possible to find the optimum plan for an arbitrary set of parameters from a plan in the master tables with a "corresponding" set of parameters. The main tool for this investigation is the asymptotic expressions for the acceptance number and for the sample size, viz. $c=n p_{0}+a+o(1)$ and $n=\frac{1}{\varphi_{0}}\left(\ln N-\frac{1}{2} \ln \ln N+\right.$ $\left.\ln \lambda+\frac{3}{2} \ln \varphi_{0}\right)+o(1)$, where p_{0} and φ_{0} are functions of $\left(p_{1}, p_{2}\right)$ only, whereas a and λ depend on the other parameters also. It is furthermore shown that the minimum value of the standardized costs per lot asymptotically equals the costs of sampling inspection plus a constant and that the producer's and the consumer's risks tend to zero inversely proportional to lot size. By means of the asymptotic formulas it is possible to find out how (n, c) vary with the individual parameters and derive two general conversion formulas.

Efficiency of various other systems of sampling plans is studied in relation to the present model and some general recommendations are made.

PRINTED IN DENMARK
BIANCO LUNOS BOGTRYKKERI A/S

CONTENTS

Page

1. Introduction and summary 5
2. The model 6
3. The exact solution and the tables 13
4. The asymptotic solution 18
5. Comparison of exact and approximate solution 23
6. Proportional change of $\left(p_{r}, p_{s}, p_{1}, p_{2}\right)$ for fixed w_{2} 28
7. Change of p_{s} for fixed ($p_{r}, p_{1}, p_{2}, w_{2}$) 32
8. Proportional change of $\left(p_{r}, p_{1}, p_{2}\right)$ and change of w_{2} 34
9. Change of w_{2} for fixed ($p_{r}, p_{s}, p_{1}, p_{2}$) 35
10. Change of $p_{r}=p_{s}$ for fixed $\left(p_{1}, p_{2}, w_{2}\right)$ 39
11. Change of all parameters 41
12. Efficiency 43
13. An example 49
14. General remarks 51
References 54
Appendix 55
Master tables for $p_{r}=0.10$ 56
Master tables for $p_{r}=0.01$ 66
Tables of conversion factors 82
Summary of conversion formulas 88

$$
-=
$$

1. Introduction and Summary

TThe main purpose of the present paper is to give a rather complete tabulation and discussion of properties of a system of single sampling attribute plans obtained by minimizing average costs under the assumptions that costs are linear in p, the fraction defective, and that the distribution of lot quality is a double binomial distribution.

Starting from a cost function containing 6 parameters and a mixed binomial prior distribution it is shown how the average costs may be written in a standard form containing only two parameters, p_{r} and p_{s}, besides the parameters defining the prior distribution. The one parameter, p_{r}, is the economic break-even quality and depends on the costs of acceptance and rejection only, whereas the second parameter, p_{s}, also depends on the costs of sampling inspection and the average quality. In a simple and practically important case p_{r} and p_{s} denote the costs of rejection and the costs of sampling inspection, respectively, divided by the costs of accepting a defective item.

Specializing the prior distribution to a double binomial distribution defined by the two quality levels $\left(p_{1}, p_{2}\right)$ and the weights $\left(w_{1}, w_{2}\right), w_{1}+w_{2}=1$, it will be seen that the optimum sampling plan (n, c) depends on the 6 parameters $\left(N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ where N denotes lot size. It may be shown, however, that the weights combine with the p 's in such a way that only 5 (independent) parameters are left.

A procedure to obtain the exact solution of the problem has been developed in a previous paper and this has been used for computing a set of master tables in which $p_{r}=p_{s}=0.01$ and $0.10, w_{2}=0.05,\left(p_{1}, p_{2}\right)$ take on suitably chosen values in relation to the value of p_{r}, and $1 \leqq N \leqq 200,000$.

In the remaining part of the paper the properties of the optimum plans are studied with the purpose to derive simple conversion formulas which will make it possible to find the optimum plan for an arbitrary set of parameters from a plan in the master table with a "corresponding" set of parameters. The main tool for this investigation is the asymptotic expressions for the acceptance number and for the sample size, viz.

$$
c=n p_{0}+a+o(1) \quad \text { and } \quad n=\frac{1}{\varphi_{0}}\left(\ln N-\frac{1}{2} \ln \ln N+\ln \lambda+\frac{3}{2} \ln \varphi_{0}\right)+o(1)
$$

where p_{0} and φ_{0} are functions of $\left(p_{1}, p_{2}\right)$ only, whereas a and λ depend on the other parameters also. It is furthermore shown that the minimum value of the standardized costs per lot asymptotically equals the costs of sampling inspection plus a constant (depending on $\left(p_{1}, p_{2}\right)$) and that the producer's and the consumer's risks tend to zero inversely proportional to lot size. Numerical investigations show that the asymptotic expressions give good approximations to the optimum plan even for quite small values of N.

By means of the asymptotic formulas it is possible to find out how (n, c) vary with the individual parameters. One of the most important results is found by letting all the p 's tend to zero which leads to "the proportionality law": The optimum sampling plan corresponding to $\left(N, \lambda p_{r}, \lambda p_{s}, \lambda p_{1}, \lambda p_{2}, w_{2}\right)$ is approximately equal to $\left(n^{*} / \lambda, c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ is the plan corresponding to $\left(N^{*}, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ with $N^{*}=N \lambda$.

This theorem combined with other similar results regarding the effect of varying the individual parameters lead to two general conversion formulas stated in sections 8 and 11. A summary of these formulas is given at the end of the paper in connection with the tables.

Efficiency of a sampling plan is defined as the ratio of the standardized costs (loss) of the optimum plan and the costs of the plan in question. Efficiency is discussed for various alternative systems and the efficiency of using optimum plans determined from wrong values of the parameters is studied.

Finally the present system is discussed in relation to other systems and it is pointed out that from an economic point of view it is not advisable to fix the consumer's or the producer's risk. If one wants a system with a fixed risk then the risk should be fixed to 50 per cent at a point between p_{1} and p_{2}. Two such IQL systems are then briefly discussed.

2. The model

Several authors have studied economic models, mostly linear, for the determination of single sampling inspection plans by attributes, see for instance [1] and [2].

We shall here start from the formulation proposed by Guthrie and Johns [3] and show how the model may be reduced to a standard form as previously used by Hald [4].

Let N and n denote lot size and sample size and let X and x denote number of defectives in the lot and the sample, respectively. The acceptance number is denoted by c.

Let the costs be
and

$$
\begin{equation*}
n S_{1}+x S_{2}+(N-n) A_{1}+(X-x) A_{2} \quad \text { for } x \leqq c \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
n S_{1}+x S_{2}+(N-n) R_{1}+(X-x) R_{2} \quad \text { for } x>c \tag{2}
\end{equation*}
$$

The interpretation of the six cost parameters depends on the kind of inspection envisaged, i. e. whether inspection is a consumer's receiving inspection, a producer's
inspection of finished goods, or "internal inspection" by delivery of goods from one department to another within the same firm. The cost parameters may have quite different values when considered exclusively from a producer's or a consumer's point of view because certain costs are borne primarily by one of the parties involved. The values of the cost parameters also depend on whether the inspection is rectifying or non-rectifying, destructive or non-destructive. In the following the two cost expressions are discussed and a few examples of interpretation are given.

Costs associated with the sample, $n S_{1}+x S_{2}$, for brevity called "costs of sampling inspection" consist of two parts: one part, $n S_{1}$, proportional to the number of items in the sample so that S_{1} includes sampling and testing costs per item, and another part, $x S_{2}$, proportional to the number of defectives in the sample, i.e. S_{2} denotes additional costs for an inspected defective item. If defective items found in the sample are repaired, say, then S_{2} includes the repair costs per item.
"Costs of acceptance" are similarly composed of a part, $(N-n) A_{1}$, proportional to the number of items in the remainder of the lot, and another part, $(X-x) A_{2}$, proportional to the number of defective items accepted. Whereas A_{1} usually will be zero or negligible, A_{2} will often be considerable. If accepted items are used as parts in an assembly operation, say, A_{2} may include the manufacturing costs (or the price) of an item, the costs of handling the defective item in assembling and disassembling, and the damage to other parts used in the assembly. In case of inspection of finished goods A_{2} may include costs of repair, service and guarantees plus loss of good-will.
"Costs of rejection" consist of a part, $(N-n) R_{1}$, proportional to the number of items in the remainder of the lot, and another part, $(X-x) R_{2}$, proportional to the number of defective items rejected. Rejection is here taken in a broad sense meaning only that the lot cannot be accepted according to the sampling plan used. Rejection may therefore lead to sorting, price reduction, scrapping, or salvaging. If rejection means sorting, say, then R_{1} includes sorting costs per item and R_{2} denotes additional costs for defective items found, for example costs of repair or replacement.

It is obvious that from a practical point of view it will in general be easiest to obtain information on the values of the cost parameters in the case of "internal inspection".

Denoting the hypergeometric probability by

$$
p\{x \mid X\}=\binom{n}{x}\binom{N-n}{X-x} /\binom{N}{X}
$$

the average costs for lots of size N with X defectives become

$$
\begin{gather*}
K(N, n, c, X)=\sum_{x=0}^{n}\left(n S_{1}+x S_{2}\right) p\{x \mid X\}+\sum_{x=0}^{c}\left((N-n) A_{1}+(X-x) A_{2}\right) p\{x \mid X\} \\
+\sum_{x=c+1}^{n}\left((N-n) R_{1}+(X-x) R_{2}\right) p\{x \mid X\} \tag{3}
\end{gather*}
$$

Let $f_{N}(X)$ denote the (prior) distribution of X, i. e. the distribution of lot quality. The average costs then become

$$
\begin{equation*}
K(N, n, c)=\sum_{X} K(N, n, c, X) f_{N}(X) . \tag{4}
\end{equation*}
$$

As shown in [4] this expression becomes linear in N for the important class of mixed binomial distributions, i.e. for

$$
\begin{equation*}
f_{N}(X)=\int_{0}^{1}\binom{N}{X} p^{X} q^{N-X} d W(p) \tag{5}
\end{equation*}
$$

where $W(p)$ denotes a cumulative distribution function (independent of N).
From (3)-(5) we find

$$
\begin{equation*}
K(N, n, c)=\int_{0}^{1} K(N, n, c, p) d W(p) \tag{6}
\end{equation*}
$$

where

$$
\begin{gather*}
K(N, n, c, p)=n\left(S_{1}+S_{2} p\right)+(N-n)\left(\left(A_{1}+A_{2} p\right) P(p)+\left(R_{1}+R_{2} p\right) Q(p)\right), \tag{7}\\
P(p)=B(c, n, p)=\sum_{x=0}^{c}\binom{n}{x} p^{x} q^{n-x}, \tag{8}
\end{gather*}
$$

and $Q(p)=1-P(p)$.
For convenience the frequency function corresponding to $W(p)$ will be called the distribution of the process average or the distribution of p as distinct from $f_{N}(X)$ which gives the distribution of X / N, i.e. the distribution of lot quality. (The following discussion will be in terms of p).

Limiting the prior distributions to mixed binomials, (6) shows that the average costs may be considered as an average of the cost function (7), which is a function of p, with respect to the distribution of p. It should be noted that this result is valid for any (N, n) for a mixed binomial prior distribution and that a similar result holds for $N \rightarrow \infty, n \rightarrow \infty$, and $n / N \rightarrow 0$, for any prior distribution. The limit theorems derived in the following may therefore be applied in general.

The sampling plans discussed are obtained by minimizing $K(N, n, c)$ according to (6) with respect to (n, c) for given cost parameters and prior distribution and they will be called Bayesian single sampling plans or optimum plans.

Starting from (7) we introduce the three cost functions

$$
\begin{align*}
& k_{s}(p)=S_{1}+S_{2} p, \tag{9}\\
& k_{a}(p)=A_{1}+A_{2} p, \tag{10}
\end{align*}
$$

and

$$
\begin{equation*}
k_{r}(p)=R_{1}+R_{2} p, \tag{11}
\end{equation*}
$$

defined for $0 \leqq p \leqq 1$. We shall make the following assumptions regarding these functions:

1. All three functions are non-negative and none of them is identical zero.
2. $k_{a}(0)<k_{r}(0)$ and $k_{a}(1)>k_{r}(1)$, from which follows that the equation $k_{a}(p)=k_{r}(p)$ has the solution

$$
\begin{equation*}
p_{r}=\left(R_{1}-A_{1}\right) /\left(A_{2}-R_{2}\right), \quad 0<p_{r}<1, \tag{12}
\end{equation*}
$$

p_{r} being called the (economic) break-even quality.
3. $k_{s}(p) \geqq k_{m}(p)$ for $0 \leqq p \leqq 1$, where

$$
k_{m}(p)=\left\{\begin{array}{ll}
k_{a}(p) & \text { for } p \leqq p_{r} \tag{13}\\
k_{r}(p) & \text { for } p>p_{r}
\end{array}\right\}
$$

The function $k_{m}(p)$ gives the unavoidable (minimum) costs, i.e. the costs corresponding to the situation where perfect knowledge of quality exists without costs and all lots are classified correctly on basis of the corresponding process average, viz. accepted for $p \leqq p_{r}$ and rejected for $p>p_{r}$.

Averages over the prior distribution are denoted by k_{s}, k_{a}, etc., i.e.

$$
\begin{equation*}
k_{a}=\int_{0}^{1} k_{a}(p) d W(p)=k_{a}(\bar{p})=A_{1}+A_{2} \bar{p}, \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
k_{m}=\int_{0}^{1} k_{m}(p) d W(p)=\int_{0}^{p_{r}} k_{a}(p) d W(p)+\int_{p_{r}}^{1} k_{r}(p) d W(p) \tag{15}
\end{equation*}
$$

Costs per item are denoted by k, costs per lot by the corresponding K, i.e. $K=N k$.
The average costs for the three cases without sampling inspection, i.e. the cases where
(a) all lots are classified correctly,
(b) all lots are accepted, and
(c) all lots are rejected,
then become k_{m}, k_{a}, and k_{r}, respectively. These cases are useful "reference cases" since sampling inspection is justified only if $k-k_{m}<\min \left\{k_{a}-k_{m}, k_{r}-k_{m}\right\}$, where $k=K(N, n, c) / N$.

Case (a) will usually be considered as the basic reference case and average costs for other cases will therefore be reduced by k_{m}, since k_{m} represents the average fixed costs per item which will be incurred irrespective of the decision made. The cost differences

$$
k_{a}-k_{m}=\int_{p_{r}}^{1}\left(k_{a}(p)-k_{r}(p)\right) d W(p)
$$

and

$$
k_{r}-k_{m}=\int_{0}^{p_{r}}\left(k_{r}(p)-k_{a}(p)\right) d W(p)
$$

represent average decision losses in case (b) and (c) respectively, and $k_{s}-k_{m}$ represents the average "loss" by inspection.

From (6) and (15) we find

$$
\begin{equation*}
K=n k_{s}+(N-n) \int_{0}^{1}\left(k_{a}(p) P(p)+k_{r}(p) Q(p)\right) d W(p) \tag{16}
\end{equation*}
$$

and

$$
K_{m}=n k_{m}+(N-n)\left\{\int_{0}^{p_{r}} k_{a}(p) d W(p)+\int_{p_{r}}^{1} k_{r}(p) d W(p)\right\}
$$

leading to

$$
\begin{gather*}
K-K_{m}=n\left(k_{s}-k_{m}\right) \\
+(N-n)\left\{\begin{array}{l}
\int_{0}^{p_{r}}\left(k_{r}(p)-k_{a}(p)\right) Q(p) d W(p)+\int_{p_{r}}^{1}\left(k_{a}(p)-k_{r}(p)\right) P(p) d W(p)
\end{array}\right\} \\
=n\left(k_{s}-k_{m}\right)+(N-n)\left(A_{2}-R_{2}\right)\left\{\int_{0}^{p_{r}}\left(p_{r}-p\right) Q(p) d W(p)+\int_{p_{r}}^{1}\left(p-p_{r}\right) P(p) d W(p)\right\}, \tag{17}
\end{gather*}
$$

the two terms giving the average costs of sampling inspection and the average decision losses, respectively.

Instead of minimizing K with respect to (n, c) we might just as well minimize $K-K_{m},\left(K-K_{m}\right) /\left(A_{2}-R_{2}\right)$, or $\left(K-K_{m}\right) /\left(k_{s}-k_{m}\right)$, since $K_{m}, A_{2}-R_{2}$, and $k_{s}-k_{m}$ are independent of (n, c). It will be seen from (17) that it is practical to use $A_{2}-R_{2}$ or $k_{s}-k_{m}$ as "economic unit".

Defining

$$
\begin{equation*}
p_{m}=\int_{0}^{p_{r}} p d W(p)+\int_{p_{r}}^{1} p_{r} d W(p)=p_{r}-\int_{0}^{p_{r}}\left(p_{r}-p\right) d W(p), \tag{18}
\end{equation*}
$$

we find $0 \leqq p_{m} \leqq p_{r}$ and

$$
\begin{equation*}
p_{r}-p_{m}=\left(k_{r}-k_{m}\right) /\left(A_{2}-R_{2}\right) . \tag{19}
\end{equation*}
$$

Defining p_{s} by means of

$$
\begin{equation*}
p_{s}-p_{m}=\left(k_{s}-k_{m}\right) /\left(A_{2}-R_{2}\right) \tag{20}
\end{equation*}
$$

Fig. 1. Example of cost functions.
we find

$$
\begin{equation*}
p_{s}-p_{r}=\left(k_{s}-k_{r}\right) /\left(A_{2}-R_{2}\right) \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{s}=\left\{\left(S_{1}-A_{1}\right)+\left(S_{2}-R_{2}\right) \bar{p}\right\} /\left(A_{2}-R_{2}\right) . \tag{22}
\end{equation*}
$$

Introducing

$$
\begin{equation*}
R^{*}(N, n, c)=\left\{K(N, n, c)-K_{m}\right\} /\left(A_{2}-R_{2}\right) \tag{23}
\end{equation*}
$$

we find the standard form

$$
\begin{equation*}
R^{*}=n\left(p_{s}-p_{m}\right)+(N-n)\left\{\int_{0}^{p_{r}}\left(p_{r}-p\right) Q(p) d W(p)+\int_{p_{r}}^{1}\left(p-p_{r}\right) P(p) d W(p)\right\} \tag{24}
\end{equation*}
$$

containing only two parameters p_{r} and $p_{s}-p_{m}$, instead of the six cost parameters in the original model, see [4]. It should be noted that $p_{s}-p_{m}$ depends on the prior distribution besides on the cost parameters.

Consider the special case given by $k_{a}(p)=A_{2} p, k_{r}(p)=R_{1}$, and $k_{s}(p)=S_{1}$, which is a model commonly used in practice. It follows that $p_{r}=R_{1} / A_{2}$ and $p_{s}=S_{1} / A_{2}$, i.e. p_{r} and p_{s} are the costs of rejection and of sampling and testing, respectively, measured with the cost of accepting a defective item. This simple interpretation of p_{r} and p_{s} is one of the reasons for using them as parameters.

It is often useful to discuss the problem in terms of the simple cost functions $k_{a}(p)=p, k_{r}(p)=p_{r}$, and $k_{s}(p)=p_{s}$, which immediately lead to the form (24). The corresponding form of (7) becomes

$$
K_{0}(p)=n p_{s}+(N-n)\left(p P(p)+p_{r} Q(p)\right)
$$

from which the general form may be found as

$$
K(p)=\left(A_{2}-R_{2}\right) K_{0}(p)+\left(n S_{2}+(N-n) R_{2}\right) p+\left(N A_{1}-n\left(S_{2}-R_{2}\right) \bar{p}\right)
$$

A sketch of the cost functions for a typical case has been given in Fig. 1, which is based on the data in section 13.

For some purposes it is useful to use $k_{s}-k_{m}$ as economic unit instead of $A_{2}-R_{2}$. Putting

$$
R(N, n, c)=\left\{K(N, n, c)-K_{m}\right\} /\left(k_{s}-k_{m}\right),
$$

i.e.

$$
R=R^{*} /\left(p_{s}-p_{m}\right),
$$

we find

$$
\begin{equation*}
R=n+\frac{N-n}{p_{s}-p_{m}}\left\{\int_{0}^{p_{r}}\left(p_{r}-p\right) Q(p) d W(p)+\int_{p_{r}}^{1}\left(p-p_{r}\right) P(p) d W(p)\right\}, \tag{25}
\end{equation*}
$$

the two terms again giving the costs of sampling inspection and the average decision losses, respectively, but here using the average costs of sampling inspection (minus k_{m}) per item in the sample as economic unit.

In the next section we shall discuss the determination of (n, c) for a double binomial distribution as prior distribution. This means that p is a random variable taking on only two values, $p_{1}<p_{r}<p_{2}$, with probabilities w_{1} and $w_{2}=1-w_{1}$, respectively. From (25) we then find

$$
\begin{equation*}
R=n+(N-n)\left(\gamma_{1} Q\left(p_{1}\right)+\gamma_{2} P\left(p_{2}\right)\right) \tag{26}
\end{equation*}
$$

where

$$
\begin{gather*}
\gamma_{i}=\left|p_{i}-p_{r}\right| w_{i}\left|\left(p_{s}-p_{m}\right)=\left|k_{a}\left(p_{i}\right)-k_{r}\left(p_{i}\right)\right| w_{i}\right|\left(k_{s}-k_{m}\right), \quad i=1,2, \tag{27}\\
p_{m}=p_{1} w_{1}+p_{r} w_{2} \tag{28}
\end{gather*}
$$

i.e. R depends on four parameters only, viz. $p_{1}, p_{2}, \gamma_{1}, \gamma_{2}$.

The correspondingly standardized costs for the cases of acceptance and rejection without inspection are

$$
\begin{equation*}
R_{a}=N\left(k_{a}-k_{m}\right) /\left(k_{s}-k_{m}\right)=N \gamma_{2} \tag{29}
\end{equation*}
$$

and

$$
\begin{equation*}
R_{r}=N\left(k_{r}-k_{m}\right) /\left(k_{s}-k_{m}\right)=N \gamma_{1} \tag{30}
\end{equation*}
$$

These results may also be obtained from (26) for $n=0$ by setting $P(p)=1$ and 0 , respectively.

If acceptance without inspection is cheaper than rejection without inspection, i. e. $k_{a}<k_{r}$ we find $\bar{p}<p_{r}$ and $\gamma_{2}<\gamma_{1}$.

In the special case $k_{s}=k_{r}$ we have $p_{s}=p_{r}$ and $\gamma_{1}=1$ so that the model contains only three parameters.

It should be noted that

$$
\begin{equation*}
\gamma_{2}=\frac{\bar{p}-p_{m}}{p_{s}-p_{m}}=1-\frac{p_{s}-\bar{p}}{p_{s}-p_{m}} \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma_{1}=\frac{p_{r}-p_{m}}{p_{s}-p_{m}}=1-\frac{p_{s}-p_{r}}{p_{s}-p_{m}} \tag{32}
\end{equation*}
$$

3. The exact solution and the tables

In a previous paper [4] we have proved the following theorem:
For a double binomial (prior) distribution of lot quality given by the parameters $\left(p_{1}, p_{2}, w_{2}\right)$ and for linear cost functions (1) and (2) the Bayesian single sampling plan may be found by minimizing $R(N, n, c)$, see (26), with respect to (n, c). The solution satisfies the two inequalities

$$
\begin{equation*}
\alpha+\beta c \leqq n<\alpha+\beta(c+1) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
F(n-1, c) \leqq N<F(n, c) \tag{34}
\end{equation*}
$$

where

$$
\begin{gather*}
\alpha=\log \frac{w_{2}\left(p_{2}-p_{r}\right)}{w_{1}\left(p_{r}-p_{1}\right)}\left|\log \frac{q_{1}}{q_{2}}=\log \frac{\gamma_{2}}{\gamma_{1}}\right| \log \frac{q_{1}}{q_{2}}, \tag{35}\\
\left.\beta=\log \frac{p_{2} q_{1}}{q_{2} p_{1}} \right\rvert\, \log \frac{q_{1}}{q_{2}}, \tag{36}
\end{gather*}
$$

and

$$
\begin{equation*}
F(n, c)=n+1+\frac{p_{s}-p_{r}+\sum_{i} w_{i}\left(p_{r}-p_{i}\right) B\left(c, n, p_{i}\right)}{\sum_{i} w_{i}\left(p_{i}-p_{r}\right) p_{i} b\left(c, n, p_{i}\right)} \tag{37}
\end{equation*}
$$

For two plans $\left(n_{1}, c_{1}\right)$ and $\left(n_{2}, c_{2}\right), c_{1}<c_{2}$ say, satisfying (33) and having overlapping N-intervals according to (34) $R\left(N, n_{1}, c_{1}\right) \lesseqgtr R\left(N, n_{2}, c_{2}\right)$ for $N \lesseqgtr N_{12}$ where

$$
\begin{equation*}
N_{12}=\frac{\left(p_{s}-p_{r}\right)\left(n_{2}-n_{1}\right)+n_{2} \gamma\left(n_{2}, c_{2}\right)-n_{1} \gamma\left(n_{1}, c_{1}\right)}{\gamma\left(n_{2}, c_{2}\right)-\gamma\left(n_{1}, c_{1}\right)} \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\gamma(n, c)=\sum_{i} w_{i}\left(p_{r}-p_{i}\right) B\left(c, n, p_{i}\right) \tag{39}
\end{equation*}
$$

In [4] the theorem was derived as a special case of a more general one. We shall here derive the theorem directly from (26) using the same method as in [4].

Values of (n, c) minimizing R must satisfy the two inequalities
and

$$
\begin{equation*}
\Delta_{c} R(N, n, c-1) \leqq 0<\Delta_{c} R(N, n, c), \quad 0 \leqq c \leqq n, \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{n} R(N, n-1, c) \leqq 0<\Delta_{n} R(N, n, c), \quad c \leqq n \leqq N, \tag{41}
\end{equation*}
$$

Δ denoting the usual forward difference operator.
Noting that $\Delta_{c} B(c, n, p)=b(c+1, n, p)$ and $\Delta_{n} B(c, n, p)=-p b(c, n, p)$ we find from (26)

$$
\begin{equation*}
\Delta_{c} R(N, n, c)=(N-n)\left\{-\gamma_{1} b\left(c+1, n, p_{1}\right)+\gamma_{2} b\left(c+1, n, p_{2}\right)\right\} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta_{n} R(N, n, c)=1-\left\{\gamma_{1} Q\left(p_{1}\right)+\gamma_{2} P\left(p_{2}\right)\right\}+(N-n-1)\left\{\gamma_{1} p_{1} b\left(c, n, p_{1}\right)-\gamma_{2} p_{2} b\left(c, n, p_{2}\right)\right\} . \tag{43}
\end{equation*}
$$

Inserting these expressions into (40) and (41) and solving for n and N, respectively, immediately leads to (33) and (34). From $R\left(N, n_{1}, c_{1}\right)=R\left(N, n_{2}, c_{2}\right)$ we next determine N_{12} by solving for N.

A sketch of R as function of n and c for fixed N has been given in Fig. 2 for a typical case.

The economic interpretation of (40) and (42) is the following: For given n the optimum value of c is determined such that a change of c, an increase by 1 say, will give nearly no change of the total decision loss, since the loss due to the increased consumer's risk is nearly balanced by the gain due to the smaller producer's risk.

Similarly the interpretation of (41) and (43) is that for given c the optimum value of n is determined such that a change of n, an increase by 1 say, will give nearly no change of total costs, since the increase of sampling inspection costs by 1 minus the average decision loss for one item is nearly balanced by the decrease in decision losses for the remainder of the lot.

Fig. 2. $R(N, n, c)$ as function of n and c for $N=1000, p_{r}=p_{s}=0.10, p_{1}=0.06, p_{2}=0.20$, and $w_{2}=0.05$.

Tabulation of optimum plans may be carried out by starting from the smallest value of c giving a positive $n(n \geqq c)$ according to (33), i.e. $c_{m}=[-\alpha /(\beta-1)]$, [] denoting "the integer part of". For consecutive values of c, n - and N-intervals are computed from (33) and (34) and in case of overlapping N-intervals costs are compared by means of (38). A detailed example may be found in [4]. The tables have been computed by this method on an electronic computer.

The sampling plans have been tabulated for two "quality levels", viz. $p_{r}=$ $=p_{s}=0.01$ and 0.10 , for one value of the weight function $w_{2}=0.05$, for 8 values of p_{1} / p_{r}, and for 10 , respectively 5 , values of p_{2} / p_{r}, giving a total of 120 tables. Each table gives (n, c) as function of N for $N \leqq 200,000$.

For $p_{r}=0.01$ the search for optimum plans has been limited to values of n which are multiples of 5 .

These tables will be referred to as "master tables" since optimum plans for other values of the parameters may easily be found from the tabulated ones by means of conversion formulas developed in the following sections.

The exact solution has been modified in one respect. For a given value of c the first and last N-interval may be rather short as compared to the other intervals. As an example consider the following section of the original table for $p_{r}=p_{s}=0.010$, $p_{1}=0.006, p_{2}=0.020, w_{2}=0.05$:

N	n	c	ΔN
$4010-4370$	165	3	360
$4370-4420$	170	3	50
$4420-4430$	240	4	10
$4430-4920$	245	4	490
$4920-5570$	250	4	650
$5570-5590$	255	4	20
$5590-5610$	325	5	20
$5610-6250$	330	5	640

The example shown is an extreme one with small intervals occurring at the beginning as well as at the end of each section of the table. It is naturally without any interest to use the sampling plan $(240,4)$ for $4420<N<4430$ and then change to $(245,4)$ for $4430<N<4920$. To eliminate such small intervals from the final table it was decided to discard the first and the last sampling plan for a given c if the length of the corresponding N-interval was less than $1 / 5$ of the length of the neighbouring interval. In such cases the value of N according to (38) was computed for the new neighbouring plans, $(165,3)$ and $(245,4)$ say, to find the optimum N-intervals for the remaining plans. The result of this procedure is in most cases practically equal to incorporating the small N -intervals into the larger neighbouring intervals, for example using $(245,4)$ for $4420<N<4920$.

To save space every second N-interval for a given value of c has been omitted because the corresponding sampling plans may be found by adding $1\left(p_{r}=0.10\right)$ and $5\left(p_{r}=0.01\right)$, respectively, to n for the preceding interval.

Values of N have been rounded to 3 significant figures and tabulation has been stopped at $N=200,000$.

As mentioned above the tables were designed as master tables from which optimum plans may be derived for other values of the parameters and for this reason it was decided to tabulate the complete solution with respect to N to make interpolation superfluous.

The user of the tables in practice may easily derive a simplified set of tables from the given ones, either by using a set of fixed N-intervals, or a set of fixed N arguments. An example has been given in the table on page 17.

The "natural" parameters of the model are (p_{1}, p_{2}, w_{2}), which characterize the prior distribution, and (p_{r}, p_{s}), which depend on the costs. The tables and the properties of the solution will be discussed in terms of these parameters on basis of the results in the next section. However, one property may be stated immediately from the observation that the solution depends on four parameters only, viz. ($p_{1}, p_{2}, \gamma_{1}, \gamma_{2}$). The three parameters (p_{r}, p_{s}, w_{2}) may therefore in respect to the solution be considered as functionally related, i. e. combinations of $\left(p_{r}, p_{s}, w_{2}\right)$ giving the same $\left(\gamma_{1}, \gamma_{2}\right)$ will lead to the same sampling plan.

Single Sampling Tables for $100 p_{r}=100 p_{s}=1.0,100 p_{1}=0.5$, and $w_{2}=0.05$.

From

$$
\begin{aligned}
& \gamma_{2}=\begin{array}{l}
\left(p_{2}-p_{r}\right) w_{2} \\
\gamma_{1}
\end{array}=\begin{array}{l}
\left(p_{r}-p_{1}\right) w_{1}
\end{array}, ~
\end{aligned}
$$

we find

$$
\begin{equation*}
p_{r}-p_{1}=\left(p_{2}-p_{1}\right) /\left(1+\frac{\gamma_{2} w_{1}}{\gamma_{1} w_{2}}\right) \tag{44}
\end{equation*}
$$

From

$$
\gamma_{1}\left(p_{s}-p_{m}\right)=\left(p_{r}-p_{1}\right) w_{1}
$$

and

$$
p_{s}-p_{m}=p_{s}-p_{1}-w_{2}\left(p_{r}-p_{1}\right)
$$

we find

$$
\begin{equation*}
p_{s}-p_{1}=\left(p_{r}-p_{1}\right)\left(\frac{w_{1}}{\gamma_{1}}+w_{2}\right) . \tag{45}
\end{equation*}
$$

These formulas show how p_{r} and p_{s} depend on w_{2} for given $\left(p_{1}, p_{2}, \gamma_{1}, \gamma_{2}\right)$. To use them in connection with the master tables we put $p_{r}=p_{s}$ and $w_{2}=0.05 \lambda$ which leads to

$$
p_{r}(\lambda)=p_{10}+\left(p_{20}-p_{10}\right) /\left(1-\gamma_{20}+\frac{20 \gamma_{20}}{\lambda}\right)
$$

where

$$
\gamma_{20}=\frac{p_{20}-p_{r 0}}{19\left(p_{r 0}-p_{10}\right)}=\frac{\varrho_{2}-1}{19\left(1-\varrho_{1}\right)}
$$

the index 0 denoting an argument in the master table, $p_{r 0}=0.01$ or $0.10, \varrho_{i}=p_{i 0} / p_{r 0}$. Dividing by $p_{r 0}$ gives

$$
\begin{equation*}
p_{r}(\lambda) / p_{r 0}=\varrho_{1}+\left(\varrho_{2}-\varrho_{1}\right) /\left(1-\gamma_{20}+\frac{20 \gamma_{20}}{\lambda}\right)=f\left(u_{2}, \varrho_{1}, \varrho_{2}\right) \tag{46}
\end{equation*}
$$

which has been tabulated in the appendix.
The field of application of the master tables may therefore be considerably enlarged by making use of the following rule:

The optimum sampling plan for $\left(N, p_{r 0}, p_{10}, p_{20}, w_{2}=0.05\right), p_{r 0}=p_{s 0}$, is the same as the plan for $\left(N, p_{r 0} f\left(w_{2}, \varrho_{1}, \varrho_{2}\right), p_{10}, p_{20}, w_{2}\right)$.

Consider for example the case with $p_{r 0}=p_{s 0}=0.010, p_{1}=0.006, p_{2}=0.040$, and $w_{2}=0.05$ for which the optimum plans have been given in the master table. The same plans are also optimum for $w_{2}=0.20$, say, and $p_{r}=p_{s}=0.019$, $p_{1}=0.006$, and $p_{2}=0.040$ which may be seen by interpolation in the table of $f\left(w_{2}, \varrho_{1}, \varrho_{2}\right)$ for $\varrho_{1}=0.6$ and $\varrho_{2}=4.0$.

4. The asymptotic solution

In this section we shall give a somewhat simpler and more direct proof of the asymptotic results found by Guthrie and Johns [3] and by Hald [4], and furthermore carry the asymptotic expansion so far that we get a useful approximation to the exact solution also for small values of c.

The proof is based on the following lemma which is a special case of a theorem proved by Blackwell and Hodges [5]:

For $c / n=h=p_{0}+\varepsilon, p_{0}$ being a constant and $\varepsilon \rightarrow 0$ for $n \rightarrow \infty$, we have

$$
\begin{equation*}
P(p)=\frac{1}{\sqrt{2 \pi n p_{0} q_{0}}} \frac{q_{0} p}{\left(p-p_{0}\right)} e^{-n \varphi(h, p)}(1+O(\sqrt{\varepsilon})) \quad \text { for } p_{0}<p \tag{47}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(h, p)=h \ln \frac{h}{p}+(1-h) \ln \frac{1-h}{1-p} \tag{48}
\end{equation*}
$$

For $p_{0}>p$ the same expression is valid for $Q(p)$ if only $p-p_{0}$ is replaced by $p_{0}-p$.

Writing

$$
\begin{equation*}
\varphi(h, p)=\varphi\left(p_{0}, p\right)+\varepsilon \varphi^{\prime}\left(p_{0}, p\right)+O\left(\varepsilon^{2}\right) \tag{49}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi^{\prime}\left(p_{0}, p\right)=\ln \frac{p_{0} q}{q_{0} p} \tag{50}
\end{equation*}
$$

we find from (26) and (47) the asymptotic expression

$$
\begin{equation*}
R=n+(N-n) \frac{q_{0}}{\sqrt{2 \pi n p_{0} q_{0}}} \sum_{i=1}^{2} \frac{\gamma_{i} p_{i}}{\mid p_{0}-p_{i}} e^{-n \varphi\left(p_{0}, p_{i}\right)-n \varepsilon \varphi^{\prime}\left(p_{0}, p_{i}\right)}(1+O(\sqrt{\varepsilon})) \tag{51}
\end{equation*}
$$

on the assumption that $p_{1}<p_{0}<p_{2}$. (As will be shown later $\varepsilon=O(1 / n)$, and we may therefore disregard $n \varepsilon^{2}$). We shall first determine the value of $h=p_{0}+\varepsilon$ which minimize R for given n and next determine the value of n giving the absolute minimum by treating R as a differentiable function of n.

The essential feature of (51) is that the two binomial risks, $Q\left(p_{1}\right)$ and $P\left(p_{2}\right)$, have been expressed as functions tending exponentially to zero for $n \rightarrow \infty$.

As explained in [4] the optimum plan must have the property that $R / N \rightarrow 0$ for $N \rightarrow \infty, n \rightarrow \infty$, and $n / N \rightarrow 0$. It follows that p_{0} must satisfy the inequality $p_{1}<p_{0}<p_{2}$ because otherwise R / N would not tend to zero but to γ_{1} or γ_{2}.

We shall state the theorem to be proved for the double binomial distribution only, but it is valid for a more general class of distributions, viz. for a distribution having probability density $w(p)=0$ for $p_{1}<p<p_{2}, w\left(p_{1}\right)=w_{1}>0, w\left(p_{2}\right)=$ $w_{2}>0, w_{1}+w_{2} \leqq 1$, and

$$
\int_{0}^{p_{1}^{*}} d W(p)+\int_{p_{2}^{*}}^{1} d W(p)=1-w_{1}-w_{2}
$$

for $0 \leqq p_{1}^{*}<p_{1}$ and $p_{2}<p_{2}^{*} \leqq 1$, which means that the probability distribution may be arbitrary outside the interval $p_{1}^{*}<p<p_{2}^{*}$. The result of such a generalization will only be to add a term to (51) of form

$$
\frac{N-n}{p_{s}-p_{m}} \frac{q_{0}}{\sqrt{2 \pi n p_{0} q_{0}}} \int_{I} \frac{\left(p_{r}-p\right) p}{p_{0}-p} e^{-n \varphi(h, p)} d W(p),
$$

(I denoting the intervals $\left(0 \leqq p \leqq p_{1}^{*}\right)$ and $\left(p_{2}^{*} \leqq p \leqq 1\right)$) which obviously is $O\left(e^{-n}\right)$ times the last term of (51) since $\varphi(h, p)>\varphi\left(h, p_{1}\right)$ for $p<p_{1}$ and $\varphi(h, p)>\varphi\left(h, p_{2}\right)$ for $p>p_{2}$.

Because of the factor $p_{r}-p$ in the cost function we might also have assumed that $w\left(p_{r}\right)>0$ without altering the result.

It is reasonable to assume that the two exponential terms in (51) tend to zero with the same speed, i.e. that p_{0} is determined from

$$
\varphi\left(p_{0}, p_{1}\right)=\varphi\left(p_{0}, p_{2}\right)
$$

which gives

$$
\begin{equation*}
p_{0}=\left(\ln \frac{q_{1}}{q_{2}}\right) /\left(\ln \frac{p_{2} q_{1}}{q_{2} p_{1}}\right)=\frac{1}{\beta} \tag{52}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi_{0}=p_{0} \ln \frac{p_{0}}{p_{i}}+q_{0} \ln \frac{q_{0}}{q_{i}}, \quad i=1 \text { or } 2 . \tag{53}
\end{equation*}
$$

Under this assumption we shall determine ε by minimization of (51). The part of R depending on ε is

$$
f(\varepsilon)=\sum_{i} \frac{\gamma_{i} p_{i}}{\left|p_{0}-p_{i}\right|} e^{-n \varepsilon \varphi^{\prime}\left(p_{0}, p_{i}\right)} .
$$

From $f^{\prime}(\varepsilon)=0$ we find

$$
\begin{equation*}
\sum_{i=1}^{2} \frac{\gamma_{i} p_{i} \varphi_{i}^{\prime}}{\mid p_{0}-p_{i}} e^{-n \varepsilon \varphi_{i}^{\prime}}-0 \tag{54}
\end{equation*}
$$

where-according to (50)-

$$
\begin{equation*}
\varphi_{i}^{\prime}=\ln \frac{p_{0} q_{i}}{q_{0} p_{i}} . \tag{55}
\end{equation*}
$$

Solving for $a=n \varepsilon$ we find

$$
\begin{equation*}
a \delta_{0}^{\prime}=\ln \frac{\gamma_{1} p_{1}\left(p_{2}-p_{0}\right) \varphi_{1}^{\prime}}{\gamma_{2} p_{2}\left(p_{0}-p_{1}\right)\left(-\varphi_{2}^{\prime}\right)} \tag{56}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta_{0}^{\prime}-\varphi_{1}^{\prime}-\varphi_{2}^{\prime}=\ln \frac{p_{2} q_{1}}{q_{2} p_{1}} . \tag{57}
\end{equation*}
$$

We thus have the result that $c=n p_{0}+a+o(1)$ in accordance with what could be expected from (33).

Inserting these results into (51) we find

$$
\begin{equation*}
R=n+(N-n) \frac{\lambda}{\sqrt{n}} e^{-n \varphi_{0}} \tag{58}
\end{equation*}
$$

with

$$
\begin{equation*}
\lambda=\frac{q_{0}}{\sqrt{2 \pi p_{0} q_{0}}} \sum_{i=1}^{2} \frac{\gamma_{i} p_{i}}{\left|p_{0}-p_{i}\right|} e^{-a \varphi_{i}^{\prime}} . \tag{59}
\end{equation*}
$$

To prove (indirectly) that $h=p_{0}+\varepsilon$ minimizes R let us assume that $h=p_{0}+\varepsilon$, given by (52) and (56), does not minimize R but that min R is obtained for $h=h_{0}+\varepsilon_{0}$, $h_{0} \neq p_{0}$ and $\varepsilon_{0} \rightarrow 0$. Denoting the part of R depending on h by $g(h)$ we find for sufficiently large n and for $h_{0}<p_{0}$, say, that

$$
g\left(h_{0}\right)=\lambda_{1}\left(h_{0}\right) e^{-n \varphi\left(h_{0}, p_{1}\right)}\left(1+O\left(e^{-n}\right)\right)
$$

since $\varphi\left(h_{0}, p_{2}\right)>\varphi\left(h_{0}, p_{1}\right)$ for $h_{0}<p_{0}$. However, $g\left(h_{0}\right)$ cannot be min $g(h)$ since $\varphi\left(h_{0}, p_{1}\right)<\varphi\left(p_{0}, p_{1}\right)$, i. e. we have reached a contradiction by assuming $h_{0} \neq p_{0}$.

From $d R / d n=0$ we find

$$
\begin{equation*}
1-(N-n) \frac{\lambda}{\sqrt{n}} e^{-n \varphi_{0}}\left(\varphi_{0}+\frac{1}{2 n}\right)-\frac{\lambda}{\sqrt{n}} e^{-n \varphi_{0}}=0 \tag{60}
\end{equation*}
$$

or

$$
\begin{equation*}
\ln (N-n)=\varphi_{0} n+\frac{1}{2} \ln n-\ln \left(\lambda \varphi_{0}\right)+o(1) . \tag{61}
\end{equation*}
$$

From (58) and (60) we also have that

$$
\begin{equation*}
\min _{(n, c)} R=n+\frac{1}{\varphi_{0}}+o(1) \tag{62}
\end{equation*}
$$

where n may be determined by inversion of (61), i.e.

$$
n=\frac{1}{\varphi_{0}}\left(\ln N-\frac{1}{2} \ln \ln N+\ln \lambda+\frac{3}{2} \ln \varphi_{0}\right)+o(1) .
$$

We have thus found that asymptotically c is a linear function of n, and n is proportional to $\ln N-\frac{1}{2} \ln \ln N$ plus a constant. Furthermore it follows from (62) that the average decision loss per lot tends to a constant $1 / \varphi_{0}$ so that for large lots decision losses divided by sampling inspection costs tend to zero.

To investigate the two risks asymptotically we find from (54)

$$
\begin{aligned}
& \gamma_{1} p_{1} \varphi_{1}^{\prime} \\
& p_{0}-p_{1}
\end{aligned} e^{-a \varphi_{1}^{\prime}}=\frac{\gamma_{2} p_{2}\left(-\varphi_{2}^{\prime}\right)}{p_{2}-p_{0}} e^{-a \varphi_{2}^{\prime}}
$$

so that (59) gives

$$
\lambda=\frac{q_{0}}{\sqrt{2 \pi p_{0} q_{0}}} \frac{\gamma_{1} p_{1} \delta_{0}^{\prime}}{\left(p_{0}-p_{1}\right)\left(-\varphi_{2}^{\prime}\right)} e^{-a \varphi_{1}^{\prime}}
$$

which together with (60) may be used to reduce

$$
Q\left(p_{1}\right)=\frac{1}{\sqrt{2 \pi p_{0} q_{0}}} \frac{q_{0} p_{1}}{p_{0}-p_{1}} e^{-a \varphi_{1}^{\prime}} \frac{1}{\sqrt{n}} e^{-n \varphi_{0}}
$$

to

$$
\begin{equation*}
Q\left(p_{1}\right)=\frac{-\varphi_{2}^{\prime}}{\varphi_{0} \gamma_{1} \delta_{0}^{\prime}} \frac{1}{N-n} . \tag{63}
\end{equation*}
$$

Similarly we have

$$
\begin{equation*}
P\left(p_{2}\right)=\frac{\varphi_{1}^{\prime}}{\varphi_{0} \gamma_{2} \delta_{0}^{\prime}} \frac{1}{N-n} \tag{64}
\end{equation*}
$$

so that

$$
\begin{equation*}
P\left(p_{2}\right) / Q\left(p_{1}\right)=\gamma_{1} \varphi_{1}^{\prime} / \gamma_{2}\left(-\varphi_{2}^{\prime}\right) \tag{65}
\end{equation*}
$$

We have thus proved the following theorem:
Asymptotically the optimum sampling plan is given by

$$
\begin{equation*}
c=n p_{0}+a+o(1) \tag{66}
\end{equation*}
$$

and

$$
\begin{equation*}
n=\frac{1}{\varphi_{0}}\left(\ln N-\frac{1}{2} \ln \ln N+\ln \lambda+\frac{3}{2} \ln \varphi_{0}\right)+o(1) \tag{67}
\end{equation*}
$$

which lead to

$$
\begin{aligned}
& \min R=\frac{1}{\varphi_{0}}\left(\ln N-\frac{1}{2} \ln \ln N+\ln \lambda+\frac{3}{2} \ln \varphi_{0}+1\right)+o(1) \\
& Q\left(p_{1}\right)=\frac{-\varphi_{2}^{\prime}}{\varphi_{0} \gamma_{1} \delta_{0}^{\prime}} \frac{1}{N-n}+o\binom{1}{N}
\end{aligned}
$$

and

$$
P\left(p_{2}\right)=\frac{\varphi_{1}^{\prime}}{\varphi_{0} \gamma_{2} \delta_{0}^{\prime}} \frac{1}{N-n}+o\left(\frac{1}{N}\right)
$$

It will be noted that p_{0} and φ_{0} depend on $\left(p_{1}, p_{2}\right)$ only, i. e. they are independent of the cost parameters and w_{2}.

The asymptotic solution supplements the exact one in several respects. Since the optimum plan is a function of 5 parameters $\left(N, p_{1}, p_{2}, \gamma_{1}, \gamma_{2}\right)$ a complete tabulation is rather hopeless even if a program has been worked out for an electronic computer. Furthermore the properties of the exact solution are not easily to be found from the procedure by which the solution is obtained. The advantages of the asymptotic solution are that
(1) it clearly shows how the optimum plan and various derived quantities depend on the parameters,
(2) it may be used as starting point for developing approximations which are valid also for small N,
(3) it may be used for developing interpolation and extrapolation formulas in connection with "master tables" of the exact solution, and
(4) it shows the sensitivity of the solution with respect to changes of the parameters.

These aspects of the solution will be discussed in the following sections.

5. Comparison of exact and approximate solution

Looking at the relation between n and c in the tables it will be seen that the optimum values of n for a given value of c tend to cluster around

$$
\begin{equation*}
n_{c}=\alpha+\beta\left(c+\frac{1}{2}\right) \tag{69}
\end{equation*}
$$

as might be expected from (33). Comparing with the asymptotic result $c=n p_{0}+a$, $p_{0}=1 / \beta$ and a being defined by (56), agreement between the two expressions would require that

$$
\left.\left(\ln \frac{p_{2}\left(p_{0}-p_{1}\right)\left(-\varphi_{2}^{\prime}\right)}{p_{1}\left(p_{2}-p_{0}\right) \varphi_{1}^{\prime}}\right)\right)\left(\ln \frac{p_{2} q_{1}}{q_{2} p_{1}}\right)=\frac{1}{2} .
$$

It can be proved that the ratio on the left hand side above is positive and less that 1. Numerical investigations show that in typical cases in practice the ratio does not deviate much from $1 / 2$. As examples consider the following results:

$100 p_{1}$	$100 p_{2}$	p_{2} / p_{1}	Ratio
0.2	4.0	20	0.528
0.2	2.0	10	0.517
0.6	4.0	6.7	0.512
0.6	2.0	3.3	0.505

The ratio depends primarily on p_{2} / p_{1} and practically the same results will be found for values of $\left(p_{1}, p_{2}\right)$ which are 10 times as large or $1 / 10$ of the values considered. We shall therefore in the following use the simpler expression (69) instead of $c=n p_{0}+a$ as the starting point for finding n from c or reversely.

The asymptotic formulas may be used in two ways:
(1) Starting from c we may determine the corresponding N-interval and within that the relation between n and N.
(2) Starting from N we may determine the corresponding n and from n determine c.

The first method is useful for making a systematic tabulation of sampling plans whereas the second is suitable for computing "isolated" plans for a given N.

Starting from an integer value of c we first find n_{c} from (69) and the corresponding N_{c} from (61). Similarly we find $N_{c-0.5}$ and $N_{c+0.5}$, being the lower and upper limit for N having c as optimum acceptance number.

In the asymptotic solution we have disregarded the discreteness of c and n. We may, however, afterwards try to take the effect of the discreteness of c into account by investigating the relationship between n and N for given (integer) value of c. From $d R(N, n, c) / d n=0$ it can be found that n is approximately a linear function of
$\log N$ with slope $-1 / \log q_{2}{ }^{*}$. Within the interval $\left(N_{c-0.5}, N_{c+0.5}\right)$ we may therefore determine n from the approximate formula

$$
\begin{equation*}
n=n_{c}-\left(\log N-\log N_{c}\right) / \log q_{2}, \quad N_{c-0.5}<N<N_{c+0.5}, \tag{70}
\end{equation*}
$$

which for small p_{2} and small intervals may be replaced by

$$
\begin{equation*}
n=n_{c}+\left(N-N_{c}\right) / N_{c} P_{2}, \quad N_{c-0.5}<N<N_{c+0.5} . \tag{71}
\end{equation*}
$$

It follows that the values of n belong to the interval

$$
n_{c} \pm \beta\left(\varphi_{0}+\frac{1}{2 n_{c}}\right) / 2 p_{2} .
$$

For applications in practice we give the formula corresponding to (61) with logarithms to base 10, i.e.

$$
\begin{equation*}
\log \left(N_{c}-n_{c}\right)=\varphi n_{c}+\frac{1}{2} \log n_{c}+\delta \tag{72}
\end{equation*}
$$

where

$$
\begin{gather*}
\varphi=p_{0} \log \frac{p_{0}}{p_{i}}+q_{0} \log \frac{q_{0}}{q_{i}}, \quad i=1 \text { or } 2, \tag{73}\\
\delta=-\log \left(\lambda \varphi_{o}\right), \tag{74}
\end{gather*}
$$

and

$$
\begin{equation*}
\lambda \varphi_{0}=10^{\varphi\left(\alpha+\frac{\beta}{2}\right)} \varphi_{\log e} \sqrt{\frac{q_{0}}{2 \pi p_{0}}} \sum_{i=1}^{2} \frac{\gamma_{i} p_{i}}{\left|p_{0}-p_{i}\right|}\binom{q_{i}}{q_{0}}^{\alpha+\frac{\beta}{2}} \tag{75}
\end{equation*}
$$

$-a$ having been replaced by $\frac{\alpha}{\beta}+\frac{1}{2}$ in $\lambda \varphi_{o}$.
In the following we shall make much use of (72) with $N_{c}-n_{c}$ replaced by N_{c} which only means that we disregard terms of order n_{c} / N_{c} and less.

The approximation obtained by using (69), (70), and (72) is usually very good even for quite small values of c. Normally the approximate value of c will deviate at most 1 from the correct value. The approximation depends essentially on p_{2} / p_{1}, being good for large values of p_{2} / p_{1} and poorer for small values. Two examples for $p_{2} / p_{1}=6.7$ and 3.3 , respectively, will show the results obtained for a typical good and poor case. Table 1 and Fig. 3 show that the approximate and the exact solution are practically identical in the first case whereas the approximate solution in the second case often will lead to a value of c being 1 too large and a corresponding value of n.

* This results is due to Mrs. K. West Andersen.

Table 1.
Comparisons of exact and approximate sampling plans computed from
(69), (70), and (72).

c					
	Approximation			Exact	
	n_{c}	n	$N_{c \pm 0.5}$	n	N
1	57	43-66	269-714	45-65	280- 714
2	112	104-120	715- 1400	105-120	715-1420
4	223	216-230	2490- 4300	220-230	2550- 4390
6	334	328-340	7190-12000	330-340	7390-12300
8	445	439-451	19700-32300	440-450	20200-33000
10	556	550-562	52400-85300	550-560	53600-87000
12	667	661-673	137000-200000	665-670	140000-200000

c	$\begin{gathered} p_{r}=p_{s}=0.010, p_{1}=0.006, p_{2}=0.020, w_{2}=0.05 . \\ \alpha=-143.0, \beta=85.879, \varphi=0.0009088, \delta=2.0785,-1 / \log q_{2}=113.97 . \end{gathered}$				
	Approximation			Exact	
	n_{c}		$N_{c \pm 0.5}$	n	N
2	72	44- 88	715-1750	-	-
4	243	234-251	2790-3970	245-250	$4420-5590$
6	415	408-422	5410-7150	415-420	7100- 8980
8	587	581-593	9270-11900	585-595	11300-14200
10	759	753-765	15100-19000	755-765	17700-22000
12	931	925-936	23800-29600	930-935	27300-33700
14	1102	1097-1107	36800-45700	1100-1105	41500-51100
16	1274	1269-1279	56500-69700	1270-1280	62800-77200
18	1446	1441-1451	86000-106000	1445-1450	94600-116000
20	1618	1613-1623	130000-159000	1615-1620	142000-173000

It is essential for the efficiency of the approximation to use the right relation between n and c, see the discussion in section 12, and it is therefore fortunate that this relation is a simple linear one.

The approximation formula breaks down for values of N for which the cheapest solution is acceptance without inspection (or rejection without inspection). As will be seen from Table 1 the approximation formula may in such cases lead to a sampling plan even if no optimum plan exists. The difference in costs by using such a plan instead of accepting without sampling inspection will, however, normally be small.

Turning to the inverse formula (67) numerical investigations show that the results are not as accurate as those found from (61). Taking one more term in the inversion of (61) and changing to logarithms with base 10 we find

$$
\begin{equation*}
n_{N}=\frac{1}{\varphi}\left\{\log N-\left(\frac{1}{2} \log \log N+d\right)\left(1-\frac{1}{3 \log N}\right)\right\} \tag{76}
\end{equation*}
$$

where

$$
\begin{equation*}
d=-\log \lambda \varphi_{0}-\frac{1}{2} \log \varphi=\delta-\frac{1}{2} \log \varphi \tag{77}
\end{equation*}
$$

The exact inversion leads to the correction term $(\log e) /(2 \log N)=0.22 / \log N$ which, however, on the basis of numerical investigations has been replaced by $1 /(3 \log N)$. If (76) is to be used extensively it pays to tabulate

$$
\begin{equation*}
g(N)=\log N-\frac{1}{2}\left(1-\frac{1}{3 \log N}\right) \log \log N \tag{78}
\end{equation*}
$$

and use (76) in the form

$$
\begin{equation*}
n_{N}=\frac{1}{\varphi}\left\{g(N)-d\left(1-\frac{1}{3 \log N}\right)\right\} . \tag{79}
\end{equation*}
$$

From n we may then find

$$
c_{N}=p_{0}\left(n_{N}-\alpha\right)-\frac{1}{2}
$$

Table 2.
Comparisons of exact and approximate sampling plans computed from (76).

and round to the nearest integer. To obtain more accurate results n_{c} may be computed from the rounded value of c_{N} and n could then be found from (70) or (71).

Table 2 shows that (76) leads to good results for the two previously discussed typical examples.

As a general conclusion of the many numerical comparisons which have been carried out we may state that the asymptotic formulas give sufficiently good approximations to the optimum sampling plans for most practical purposes. If one wants to be sure to find the optimum plan one may start from the approximation and compare the costs of this plan with the costs of suitably chosen neighbouring plans thus finding the optimum one by trial and error.

The formulas (72) and (77) have, however, the serious drawback from the point of view of application that the constants δ and d are rather hard to compute. The asymptotic formulas have therefore in the following only been used to derive relationships between sampling plans under variation of the parameters. It is to be expected that these relationships will prove to be rather accurate in view of the good approximation demonstrated above.

According to (62) we have for the optimum plans that the average decision loss asymptotically is constant, i.e. $R-n \sim 1 / \varphi_{0}$. For small N this gives an upper limit to the decision loss but the formula is not of much value as an approximation.

Fig. 4 sketches for the two previously considered examples $R-n$ as function of N. The discontinuities correspond to changes in c; each time c is increased by one n

increases approximately by β and $R-n$ decreases with the same quantity. The asymptotic result corresponds to the mid-points of the intervals. It will be seen that the asymptote is nearly being reached for $N=100,000$ in the case with $p_{2} / p_{1}=6.7$ but not for $p_{2} / p_{1}=3.3$.

For small N a useful upper limit to the average decision loss may be obtained by noticing that $R<N \gamma_{2}$ if an optimum plan exists and the alternative is acceptance without inspection.

According to (63) and (64) the probabilities of wrong decisions, $Q\left(p_{1}\right)$ and $P\left(p_{2}\right)$, are asymptotically inversely proportional to N. Fig. 5 sketches for the two examples $Q\left(p_{1}\right)$ and $P\left(p_{2}\right)$ as functions of N. The asymptotic formula gives a reasonable approximation to $P\left(p_{2}\right)$ in both cases, whereas the approximation to $Q\left(p_{1}\right)$ is rather poor, particularly for the case $p_{2} / p_{1}=3.3$. The discontinuities resulting from changes of c are very pronounced for $Q\left(p_{1}\right)$.

6. Proportional change of $\left(p_{r}, p_{s}, p_{1}, p_{2}\right)$ for fixed w_{2}

We shall first study the asymptotic formulas for all "quality levels" tending to zero with the same speed. Introducing the auxiliary quantities

$$
\begin{equation*}
\varrho_{s}=\frac{p_{s}}{p_{r}}, \varrho_{1}=\frac{p_{1}}{p_{r}}, \varrho_{2}=\frac{p_{2}}{p_{r}}, \varrho_{m}=\frac{p_{m}}{p_{r}}, \varrho=\frac{p_{2}}{p_{1}}, \tag{80}
\end{equation*}
$$

Fig. 5. Probabilities of wrong decisions as functions of lot size.
we find for $p_{r} \rightarrow 0$ and fixed $\left(\varrho_{s}, \varrho_{1}, \varrho_{2}, w_{2}\right)$

$$
\begin{aligned}
\alpha p_{r} & \rightarrow\left(\ln \frac{w_{2}\left(\varrho_{2}-1\right)}{w_{1}\left(1-\varrho_{1}\right)}\right) /\left(\varrho_{2}-\varrho_{1}\right)=\alpha_{0}, \\
\beta p_{r} & \rightarrow\left(\ln \frac{\varrho_{2}}{\varrho_{1}}\right) /\left(\varrho_{2}-\varrho_{1}\right)=\beta_{0}, \\
p_{0} / p_{r} & \rightarrow 1 / \beta_{0}=\varrho_{0}, \\
p_{0} / p_{r} & \rightarrow \varrho_{0} \ln \frac{\varrho_{0}}{\varrho_{i}}+\left(\varrho_{i}-\varrho_{0}\right)=\varphi^{*}, \quad i=1 \text { or } 2,
\end{aligned}
$$

and
$\lambda \varphi_{0} / \sqrt{p_{r}} \rightarrow \exp \left\{\varphi^{*}\left(\alpha_{0}+\frac{\beta_{0}}{2}\right)\right\} \frac{\varphi^{*}}{\sqrt{2 \pi \varrho_{0}}} \sum_{i=1}^{2} \frac{\omega_{i} \varrho_{i}\left(\varrho_{i}-1\right)}{\left(\varrho_{s}-\varrho_{m}\right)\left(\varrho_{i}-\varrho_{0}\right)} \exp \left\{\left(\varrho_{0}-\varrho_{i}\right)\left(\alpha_{0}+\frac{\beta_{0}}{2}\right)\right\}=\exp \left\{-\delta_{0}\right\}$,
where in the last expression $-a$ has been replaced by $\frac{\alpha}{\beta}+\frac{1}{2}$ as in (75).
Inserting these results into (69) and (72) we find

$$
n_{c} p_{r} \rightarrow \alpha_{0}+\beta_{0}\left(c+\frac{1}{2}\right)=n_{0}(c)
$$

and

$$
\ln \left(N_{c} p_{r}\right) \rightarrow \varphi^{*} n_{0}(c)+\frac{1}{2} \ln n_{0}(c)+\delta_{0}=\ln N_{0}(c) .
$$

It follows that for small p_{r} we have approximately
and

$$
n_{c} \sim n_{0}(c) / p_{r}
$$

$$
N_{c} \sim N_{0}(c) / p_{r}
$$

where $n_{0}(c)$ and $N_{0}(c)$ are independent of p_{r}, i.e. n and N vary inversely proportional to p_{r} for given c.

Suppose that the optimum sampling plans have been tabulated for a small value of $p_{r}, p_{r}=0.01$ say, and certain values of $\left(\varrho_{s}, \varrho_{1}, \varrho_{2}, w_{2}\right)$. The above result may then be used to find the optimum plans for λp_{r}, say, from the plans in the given table. Denoting the quantities required by $n_{c}\left(\lambda p_{r}\right)$ and $N_{c}\left(\lambda p_{r}\right)$ we have for given c

$$
\begin{equation*}
n_{c}\left(\lambda p_{r}\right) \sim n_{c}\left(p_{r}\right) / \lambda \tag{81}
\end{equation*}
$$

and

$$
\begin{equation*}
N_{c}\left(\lambda p_{r}\right) \sim N_{c}\left(p_{r}\right) / \lambda, \tag{82}
\end{equation*}
$$

i.e. we have found the following important "proportionality law":

The optimum sampling plan corresponding to $\left(N, \lambda p_{r}, \lambda p_{s}, \lambda p_{1}, \lambda p_{2}, w_{2}\right)$ is approximately equal to $\left(n^{*} / \lambda, c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ is the plan corresponding to (N^{*}, p_{r}, $\left.p_{s}, p_{1}, p_{2}, w_{2}\right)$ with $N^{*}=N \lambda$.

The theorem has been illustrated in Fig. 6 which shows that the approximation holds good also for quite large values of p_{r}.

This theorem greatly enlarges the field of application of the two master tables. The table with $p_{r}=0.01$ may be used for $\lambda<5$ and the table with $p_{r}=0.10$ for $0.5<\lambda<2$, in that way covering all cases with $p_{r}<0.20$ which is the domain of practical interest.

A large number of numerical investigations has shown that the proportionality law gives rather accurate results. The value of c found will seldom deviate more than 1 from the correct value. For $\lambda>1$ the formula will normally tend to give too large a value of c and for $\lambda<1$ too small a value.

The example in Table 3 shows the derivation of sampling plans with a breakeven quality of $p_{r}=0.03$, partly from the first master table using $\lambda=3$ and partly from the second using $\lambda=0.3$. Both results are remarkably close to the exact solution, see also Fig. 6.

Fig 6. Relation between lot size and acceptance number by proportional change of ($p_{r}, p_{s}, p_{1}, p_{2}$) for fixed w_{2}.

Table 3.
Comparisons of exact sampling plans for $p_{r}=p_{s}=0.030, p_{1}=0.018, p_{2}=0.060$, $w_{2}=0.05$, and approximate plans derived from the master tables by the proportionality law.

N	Exact		Derived from$p_{r}=0.01 \quad(\lambda=3)$			N*	$\begin{aligned} & p_{r}= \\ = & 0.3 \mathrm{~N} \end{aligned}$	from $\begin{aligned} & (\lambda= \\ & n^{*} / 0.3 \end{aligned}$	c^{*}
1000	Accept		3000	Accept			300		
2000	110	5	6000	110	5		600	115	5
3000	140	6	9000	165	7		900	145	6
5000	225	9	15000	225	9		1500	200	8
7000	255	10	21000	255	10		2100	255	10
10000	310	12	30000	310	12		3000	285	11
20000	395	15	60000	395	15		6000	365	14
30000	455	17	90000	455	17		9000	425	16
50000	510	19	150000	540	20		15000	480	18
70000	570	21	210000	570	21		21000	535	20
100000	625	23	-	-	-		30000	565	21
200000	710	26	-	-	-		60000	675	25

Consider now the inverse formula (79). From

$$
d+\log p_{r} \rightarrow \delta_{0} \log e-\frac{1}{2} \log \varphi^{*}=d_{0}
$$

we find

$$
\begin{equation*}
n_{N}\left(\lambda p_{r}\right) \sim \frac{n_{N}\left(p_{r}\right)}{\lambda}+\left(1-\frac{1}{3 \log N}\right) \frac{\log \lambda}{\lambda \varphi\left(p_{r}\right)} \tag{83}
\end{equation*}
$$

where $\varphi\left(p_{r}\right)$ denotes the value of φ for the given (basic) set of parameters. This formula shows how the sample size for a given lot size changes with the "quality level". This result is, however, not as accurate as the previous one for small N and it is neither as convenient for use in connection with the tables.

An example has been given in the following table for $N=50,000, p_{r}=p_{s}=$ $=0.010, p_{1}=0.006, p_{2}=0.040$, and $w_{2}=0.05$.

Comparisons of exact and approximate sampling plans derived from (83).

	Exact		Approximation	
λ	n	c	n	c
0.1	1850	3	2330	4
0.3	1300	7	1210	7
1.0	505	9	-	-
3.0	205	11	210	11
10.0	63	12	78	15

7. Change of \boldsymbol{p}_{s} for fixed $\left(\boldsymbol{p}_{r}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}, w_{2}\right)$

The master tables contain sampling plans for $p_{s}=p_{r}$ only, because a simple and rather accurate rule exists for deriving plans for $p_{s} \neq p_{r}$ from the tabulated ones.

From (69) and (72) it will be seen that p_{s} influences N_{c} only through δ. Writing

$$
p_{s}-p_{m}=p_{s}-p_{r}+w_{1}\left(p_{r}-p_{1}\right)=w_{1}\left(p_{r}-p_{1}\right)\left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)
$$

it follows from (72) that

$$
\log N_{c}\left(p_{r}, p_{s}\right)=\log N_{c}\left(p_{r}, p_{r}\right)+\log \left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)
$$

or

$$
\begin{equation*}
N_{c}\left(p_{r}, p_{s}\right)=N_{c}\left(p_{r}, p_{r}\right) / \lambda_{s}, \tag{84}
\end{equation*}
$$

say, where

$$
\begin{equation*}
\lambda_{s}=\left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)^{-1} . \tag{85}
\end{equation*}
$$

Table 4.
Comparisons of exact sampling plans for $p_{r}=0.010, p_{s}=0.020, p_{1}=0.006$, $p_{2}=0.040, w_{2}=0.05$ with approximate plans derived from the master table.

N	Exact		Approximation		
	n	c	$N^{*}=0.275 N$	n^{*}	c^{*}
300	Accept		83	5	0
500	5	0	138	10	0
700	10	0	193	15	0
1000	15	0	275	15	0
2000	60	1	550	60	1
3000	110	2	825	110	2
5000	120	2	1380	120	2
7000	170	3	1930	170	3
10000	220	4	2750	220	4
20000	280	5	5500	280	5
30000	330	6	8250	330	6
50000	390	7	13800	390	7
70000	395	7	19300	395	7
100000	450	8	27500	445	8
200000	505	9	55000	550	10

We have thus proved the following theorem:
The optimum sampling plan corresponding to ($N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}$) is approximately equal to the plan (n^{*}, c^{*}) corresponding to $\left(N^{*}, p_{r}, p_{r}, p_{1}, p_{2}, w_{2}\right)$ with $N^{*}=N \lambda_{s}$.

This theorem makes it possible to use the master tables also for $p_{s} \neq p_{r}$ if only N is replaced by N^{*}. The error in c by using this procedure will seldom be more than ± 1. An example has been given in Table 4 with

$$
\lambda_{s}=\left(1+\frac{2-1}{0.95(1-0.6)}\right)^{-1}=0.275
$$

The corresponding "inverse" formula becomes

$$
\begin{equation*}
n_{N}\left(p_{r}, p_{s}\right)=n_{N}\left(p_{r}, p_{r}\right)+\frac{1}{\varphi}\left(1-\frac{1}{3 \log N}\right) \log \lambda_{s} . \tag{86}
\end{equation*}
$$

Using this result for $N=50,000$ and the parameters given in Table 4 we find

$$
n=505-293 \times 0.9291 \times 0.5607=350
$$

as compared to the exact solution 390 .
In the following sections we shall limit ourselves to consider cases with $p_{s}=p_{r}$ since we may always begin the analysis by replacing N by N^{*} if $p_{s} \neq p_{r}$. The "conversion factor" λ_{s} depends on w_{2} and the ratios $\left(\varrho_{s}, \varrho_{1}\right)$, i. e. λ_{s} is independent of p_{2} and the general quality level.

8. Proportional change of $\left(p_{r}, p_{1}, p_{2}\right)$ and change of w_{2}

Consider the problem of finding the optimum plans for an arbitrary set of parameter values ($p_{r}, p_{1}, p_{2}, w_{2}$) by combining the proportionality law with the relation between p_{r} and w_{2} for given γ_{2} and using the tabulated plans in the master table for parameter values $\left(p_{r 0}, p_{10}, p_{20}, w_{20}\right)$, say.

The problem is to determine λ so that $\left(p_{r} ; p_{1}, p_{2}\right)=\left(\lambda p_{r 0}^{*}, \lambda p_{10}, \lambda p_{20}\right)$ and $\left(p_{r 0}^{*}\right.$, $\left.p_{10}, p_{20}, w_{2}\right)$ give the same value of γ_{2} as $\left(p_{r 0}, p_{10}, p_{20}, w_{20}\right)$. For this value of λ we may find the plans for ($p_{r}, p_{1}, p_{2}, w_{2}$) from the plans for ($p_{r 0}, p_{10}, p_{20}, w_{2}$) by means of the proportionality law, and the plans for ($p_{r 0}^{*}, p_{10}, p_{20}, w_{2}$) are identical to the plans for $\left(p_{r 0}, p_{10}, p_{20}, w_{20}\right)$. (It will be noted that $p_{r 0}^{* /} / p_{r 0}$ is identical to the function defined by (46)).

Since the value of γ_{2} is the same for $\left(p_{r}, p_{1}, p_{2}, w_{2}\right)$ and ($p_{r 0}^{*}, p_{10}, p_{20}, w_{2}$) we have the equation $\gamma_{20}=\gamma_{2}$ for the determination of λ, i.e.

$$
\frac{w_{20}\left(p_{20}-p_{r 0}\right)}{w_{10}\left(p_{r 0}-p_{10}\right)}=\frac{w_{2}\left(p_{2}-p_{r}\right)}{w_{1}\left(p_{r}-p_{1}\right)} .
$$

Introducing $p_{20}=p_{2} / \lambda$ and $p_{10}=p_{1} / \lambda$ we find

$$
\begin{equation*}
\lambda p_{r 0}=\left(p_{2}+\frac{w_{10}}{w_{20}} \gamma_{2} p_{1}\right) /\left(1+\frac{w_{10}}{w_{20}} \gamma_{2}\right) . \tag{87}
\end{equation*}
$$

For the master table with $p_{r 0}=0.01$ and $w_{20}=0.05$ the result is

$$
\begin{equation*}
\lambda=100\left(p_{2}+19 \gamma_{2} p_{1}\right) /\left(1+19 \gamma_{2}\right) \tag{88}
\end{equation*}
$$

For the other master table $\left(p_{r 0}=0.10\right)$ the factor 100 should be replaced by 10 .
The results of sections $6-8$ may be combined to the following theorem:
The optimum sampling plan corresponding to $\left(N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ is approximately equal to $\left(n^{*} / \lambda, c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ may be found in the master table for $N^{*}=N \lambda_{s} \lambda$, $p_{10}=p_{1} / \lambda$, and $p_{20}=p_{2} / \lambda$, the conversion factors being equal to

$$
\lambda_{s}=\left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)^{-1}
$$

and

$$
\lambda=100\left(p_{2}+19 \gamma_{2} p_{1}\right) /\left(1+19 \gamma_{2}\right), \quad \gamma_{2}=\frac{w_{2}\left(p_{2}-p_{r}\right)}{w_{1}\left(p_{r}-p_{1}\right)}
$$

for the 0.01-table, 100 being replaced by 10 for the 0.10-table.
By means of this theorem it is rather easy to find the optimum plan corresponding to an arbitrary set of parameter values if only p_{1} / λ and p_{2} / λ fall within the range of arguments in the master tables. If that is not the case the method given in the next section may be used.

Usually p_{1} / λ and p_{2} / λ will not be equal to the arguments used in the master tables. One might then interpolate but this is hardly worth while since the arguments in the table have been chosen in such a way that by rounding to the nearest argument the rounding error will ordinarily be less than 10%.

If one wants to be sure to obtain a sufficiently large sample the value of p_{1} / λ should be rounded up and the value of p_{2} / λ rounded down.

As an example consider the problem of finding the sampling plans for $\left(p_{r}, p_{1}, p_{2}\right.$, $\left.w_{2}\right)=(0.03,0.01,0.07,0.08)$ and $p_{s}=p_{r}$. Since $p_{r}<0.05$, say, we choose to use the 0.01 -table. From

$$
\gamma_{2}=\frac{8}{92} \frac{7-3}{3-1}=0.174, \quad 19 \gamma_{2}=3.31
$$

we find $\lambda=(7+3.31) /(1+3.31)=2.39, \quad p_{1} / \lambda=0.01 / 2.39=0.0042, \quad$ and $\quad p_{2} / \lambda$ $=0.07 / 2.39=0.029$. The master table should thus be entered with $p_{10}=0.004$ and $p_{20}=0.030$. For $N=2000$, say, we find $N^{*}=4780$ and $\left(n^{*}, c^{*}\right)=(210,3)$ leading to $(n, c)=(210 / 2.39,3)=(90,3)$ which is the correct solution.

If $w_{2}=0.02$ instead of 0.08 we find similarly $\lambda=4.38, p_{1} / \lambda=0.0023 \simeq 0.0025$ and $p_{2} / \lambda=0.0160 \cong 0.0150$. For $N=2000$ we get $N^{*}=8760$ leading to acceptance without inspection as the most economical decision.

9. Change of $\boldsymbol{w}_{\mathbf{2}}$ for fixed $\left(\boldsymbol{p}_{\boldsymbol{r}}, \boldsymbol{p}_{s}, \boldsymbol{p}_{1}, \boldsymbol{p}_{2}\right)$

In the following we shall develop a method for evaluating the effect of changing one of the five parameters only, and use it first for w_{2} and then for p_{r}.

From (69) and (72) we find for given c

$$
\begin{equation*}
\frac{\partial n_{c}}{\partial \log w_{2}}=\frac{\partial \alpha}{\partial \log w_{2}}=1 /\left(w_{1} \log \frac{q_{1}}{q_{2}}\right) \tag{89}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \log N_{c}}{\partial \log w_{2}}=\varphi \frac{\partial n_{c}}{\partial \log w_{2}}+\frac{1}{2} \frac{\partial \log n_{c}}{\partial \log w_{2}}+\frac{\partial \delta}{\partial \log w_{2}} . \tag{90}
\end{equation*}
$$

The last term on the right hand side is a rather complicated function of the parameters. Tabulation of δ and graphical analysis of δ as a function of $\log w_{2}$ has shown, however, that a least for $w_{2} \leqq 0.20$ and $p_{r} \leqq 0.10$ (and corresponding values of $\left.p_{s}, p_{1}, p_{2}\right) \delta$ is approximately a linear function of $\log w_{2}$ with a slope depending slightly on $\left(\varrho_{s}, \varrho_{1}, \varrho_{2}\right)$ and being practically independent of p_{r}.

Limiting ourselves to the case $p_{s}=p_{r}$ we thus have

$$
\frac{\partial \delta}{\partial \log w_{2}} \simeq-b_{1}\left(\varrho_{1}, \varrho_{2}\right)
$$

say, where $b_{1}\left(\varrho_{1}, \varrho_{2}\right)$ has been tabulated in the appendix.

Writing $\delta=\delta\left(p_{r}, \varrho_{1}, \varrho_{2}, w_{2}\right)$ and putting $w_{2}=0.02$ and 0.20 respectively, so that $\Delta \log w_{2}=\log 0.20-\log 0.02=1$, an approximation to $\partial \delta / \partial \log w_{2}$ may be found as $\delta\left(p_{r}, \varrho_{1}, \varrho_{2}, 0.20\right)-\delta\left(p_{r}, \varrho_{1}, \varrho_{2}, 0.02\right)$. This approximation has been computed for both $p_{r}=0.01$ and 0.10 , and finally the average of the two has been taken as $-b_{1}$.

For small p_{r} we also have

$$
\varphi / \log \frac{q_{1}}{q_{2}} \simeq \varphi^{*} /\left(\varrho_{2}-\varrho_{1}\right)=b_{2}(\varrho) .
$$

The values given for b_{2} have been computed as averages of $\varphi /\left(\log \frac{q_{1}}{q_{2}}\right)$ for $p_{r}=0.01$
$p_{r}=0.10$. and $p_{r}=0.10$.

For large n we have that $(\log e) / 2 n$ is small as compared to φ and we shall therefore disregard the second term on the right hand side of (90). We then have approximately

$$
\begin{gathered}
\partial \log N_{c} \\
\partial \log w_{2}
\end{gathered}=\begin{gathered}
b_{2}(\varrho) \\
w_{1}
\end{gathered}-b_{1}\left(\varrho_{1}, \varrho_{2}\right)
$$

which gives

$$
N_{c}\left(w_{2}\right)=A w_{2}^{-b_{1}}\left(\frac{w_{1}}{w_{2}}\right)^{-b_{3}}
$$

where A denotes a constant of integration. Changing from w_{2} to λw_{2} we get

$$
\begin{equation*}
N_{c}\left(\lambda w_{2}\right)=N_{c}\left(w_{2}\right) / f_{1}(\lambda) \tag{91}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{1}(\lambda)=\lambda^{b_{1}-b_{2}}\left(1-(\lambda-1) \frac{w_{2}}{w_{1}}\right)^{b_{2}} . \tag{92}
\end{equation*}
$$

From (69) we further have

$$
\begin{equation*}
n_{c}\left(\lambda w_{2}\right)=n_{c}\left(w_{2}\right)+g_{1}(\lambda) \tag{93}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{1}(\lambda)=\left(\log \frac{\lambda w_{1}}{1-\lambda w_{2}}\right) /\left(\log \frac{q_{1}}{q_{2}}\right) \sim\left(\ln \frac{\lambda w_{1}}{1-\lambda w_{2}}\right) /\left(\varrho_{2}-\varrho_{1}\right) p_{r} \tag{94}
\end{equation*}
$$

For convenience f_{1} and g_{1} have been written as functions of λ only, even if they both depend also on other parameters. The function f_{1} which will be called the conversion factor for N due to a change in w_{2} has been tabulated in the appendix for w_{2} $=0.05$ as a function of $\left(\lambda, \varrho_{1}, \varrho_{2}\right)$. The function g_{1} which gives the correction to n due to a change in w_{2} has similarly been tabulated in the appendix as function of $\left(\lambda, \varrho_{1}, \varrho_{2}\right)$ for $w_{2}=0.05$ and $p_{r}=0.01$. Values of this function for other values of p_{r} may be obtained as $g_{1} / 100 p_{r}$ where g_{1} represents the tabulated values.

Fig. 7. Relation between lot size and acceptance number by change of w_{2} for fixed ($p_{r}, p_{s}, p_{1}, p_{2}$).

The above results may be formulated as the following theorem:
The optimum sampling plan corresponding to $\left(N, p_{r}, p_{s}, p_{1}, p_{2}, \lambda w_{2}\right), p_{r}=p_{s}$, is approximately equal to $\left(n^{*}+g_{1}(\lambda), c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ is the plan corresponding to $\left(N^{*}, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ with $N^{*}=N f_{1}(\lambda)$.

The theorem has been illustrated in Fig. 7.
This theorem enlarges the field of application of the two master tables with respect to values of w_{2} in a similar manner as the law of proportionality does with respect to the other parameters. The results of using the approximation have been compared with the exact solutions in a large number of cases and the deviations found between the approximate and the correct value of c have never exceeded 1 for $\lambda<4$. There is a tendency for the approximation to give too small a value of c for $\lambda>1$ and too large a value for $\lambda<1$, in particular for small N.

It should be noted that the formula breaks down in some cases for small N. Let N_{a} denote the largest N for which acceptance without inspection is cheaper than sampling inspection for the master table used. If $\lambda>1$ and $N f_{1}(\lambda)=N^{*}<N_{a}$ then the formula does not lead to a sampling plan even if there may exist a plan which for λw_{2} is cheaper than acceptance without inspection. Similarly, for $\lambda<1$ and $N f_{1}(\lambda)=N^{*}>N_{a}$ there may be some cases where the approximation formula leads to a sampling plan even if the cheapest solution is acceptance without inspection.

An example has been shown in Table 5. The approximation is remarkably good. Since $N_{a}=74$ the approximation formula leads to acceptance without inspection for all $N \leqq 57$. Sampling plans cheaper than acceptance without inspection do, however, exist for $12 \leqq N \leqq 57$.

Table 5.

Comparisons of exact sampling plans for $p_{r}=p_{s}=0.010, p_{1}=0.006, p_{2}=0.040$, $w_{2}=0.10$, and approximate plans derived from the master table. $f_{1}=1.29, g_{1}=20$.

N	Exact		Approximate		
	n	c	$N^{*}=1.29 \mathrm{~N}$	$n^{*}+20$	c^{*}
50	15	0	65		
70	20	0	90	25	0
100	25	0	129	30	0
200	35	0	258	35	0
300	75	1	387	75	1
500	85	1	645	85	1
700	130	2	903	130	2
1000	140	2	1290	140	2
2000	240	4	2580	240	4
3000	250	4	3870	250	4
5000	305	5	6450	300	5
7000	355	6	9030	355	6
10000	405	7	12900	405	7
20000	465	8	25800	465	8
30000	520	9	38700	520	9
50000	575	10	64500	575	10
70000	630	11	90300	630	11
100000	635	11	129000	635	11
200000	740	13	-	-	-

Using the method of section 8 we find $\gamma_{2}=0.833, \lambda=0.804, p_{1} / \lambda=0.0075$, and $p_{2} / \lambda=0.050$. Since p_{1} / λ falls outside the range of arguments in the master table the method does not apply. Using $p_{1} / \lambda=0.007$ gives, however, a rather good approximation.

From the inverse formula (79) we get

$$
\begin{gathered}
\partial n_{N} \\
\partial \log w_{2}
\end{gathered}=\frac{b_{1}\left(\varrho_{1}, \varrho_{2}\right)}{\varphi}\left(1-\frac{1}{3 \log N}\right)
$$

and consequently

$$
n_{N}\left(w_{2}\right)=A+\frac{b_{1}}{\varphi}\left(1-\frac{1}{3 \log N}\right) \log w_{2}
$$

or

$$
\begin{equation*}
n_{N}\left(\lambda w_{2}\right)=n_{N}\left(w_{2}\right)+\frac{b_{1}}{\varphi}\left(1-\frac{1}{3 \log N}\right) \log \lambda . \tag{95}
\end{equation*}
$$

This shows that the difference between $n_{N}\left(\lambda w_{2}\right)$ and $n_{N}\left(w_{2}\right)$ for given N is proportional to $\log \lambda$. This formula is, however, not as accurate as (93) for small N.

An example has been given in the following table for $N=20,000, p_{r}=p_{s}$ $=0.010, p_{1}=0.006, \quad p_{2}=0.020$, and $w_{2}=0.05$, which gives $b_{1}=0.59$ and $1 / \varphi=1100$.

Comparisons of exact and approximate sampling plans derived from (95).

	Exact		Approx.		
$100 w_{2}$	λ	n	c	n	c
2.5	0.5	540	8	580	9
5.0	1.0	760	10	-	-
10.0	2.0	980	12	940	11
20.0	4.0	1130	13	1120	13

10. Change of $\boldsymbol{p}_{r}=\boldsymbol{p}_{s}$ for fixed $\left(\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, w_{2}\right)$

From (69) and (72) we find for given c

$$
\begin{equation*}
\frac{\partial n_{c}}{\partial \log p_{r}}=\frac{\partial \alpha}{\partial \log p_{r}}=-p_{r}\left(\frac{1}{p_{r}-p_{1}}+\frac{1}{p_{2}-p_{r}}\right) /\left(\log q_{1}\right) \tag{96}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \log N_{c}}{\partial \log p_{r}}=\varphi \frac{\partial n_{c}}{\partial \log p_{r}}+\frac{1}{2} \frac{\partial \log n_{c}}{\partial \log p_{r}}+\frac{\partial \delta}{\partial \log p_{r}} . \tag{97}
\end{equation*}
$$

Numerical investigations show that-for $w_{2}<0.20, p_{r}<0.20$, and $p_{r}=p_{s}-$ δ is approximately a linear function of $\log p_{r}$ with a slope depending on ϱ and being practically independent of "the level of $\left(p_{1}, p_{2}\right)$ " and of w_{2} if only p_{r} does not come too close to p_{1} or p_{2}, i.e.

$$
\frac{\partial \delta}{\partial \log p_{r}} \simeq b_{3}(\varrho) \text { for } p_{1} \varrho^{1 / 5}<p_{r}<p_{2} \varrho^{-1 / 5},
$$

say, where $b_{3}(\varrho)$ has been tabulated. (Another limitation of no practical importance is that p_{2} must not be too close to 1). An approximation to $\partial \delta / \partial \log p_{r}$ may be computed as the corresponding difference-quotient setting $p_{r}=p_{1} \varrho^{1 / 5}$ and $p_{r}=p_{2} \varrho^{-1 / 5}$ respectively. This has been done for $w_{2}=0.05$ and for the "standard" values of p_{1} and p_{2}, partly at the 1% and partly at the 10% level. The value of b_{3} given in the table is the average of the two values found.

Proceeding as in section 9 we have approximately

$$
\frac{\partial \log N_{c}}{\partial \log p_{r}}=-b_{2}(\varrho) p_{r}\left(\frac{1}{p_{r}-p_{1}}+\frac{1}{p_{2}-p_{r}}\right)+b_{3}(\varrho)
$$

which on integration gives

Table 6.
Comparisons of exact sampling plans for $p_{r}=p_{s}=0.020, p_{1}=0.006, p_{2}=0.040$, $w_{2}=0.05$ with approximate plans derived from the master table. $\lambda=2, f_{2}=0.52$,

N	Exact		Approximate		
	n	c	$N^{*}=0.52 \mathrm{~N}$	$n^{*}-55$	c^{*}
2000	Accept		1040	60	2
3000	75	2	1560	110	3
5000	130	3	2600	165	4
7000	180	4	3640	170	4
10000	230	5	5200	225	5
20000	290	6	10400	280	6
30000	345	7	15600	335	7
50000	400	8	26000	390	8
70000	450	9	36400	445	9
100000	460	9	52000	450	9
200000	565	11	104000	555	11

$$
N_{c}\left(p_{r}\right)=A p_{r}^{b_{3}}\left(\frac{p_{2}-p_{r}}{p_{r}-p_{1}}\right)^{b_{2}}
$$

and

$$
\begin{equation*}
N_{c}\left(\lambda p_{r}\right)=N_{c}\left(p_{r}\right) / f_{2}(\lambda) \tag{98}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{2}(\lambda)=\lambda^{-b_{3}}\left(\frac{\left(\varrho_{2}-1\right)\left(\lambda-\varrho_{1}\right)}{\left(1-\varrho_{1}\right)\left(\varrho_{2}-\lambda\right)}\right)^{b_{2}} . \tag{99}
\end{equation*}
$$

From (69) we further have

$$
\begin{equation*}
n_{c}\left(\lambda p_{r}\right)=n_{c}\left(p_{r}\right)+g_{2}(\lambda) \tag{100}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{2}(\lambda) \simeq\left(\ln \frac{\left(1-\varrho_{1}\right)\left(\varrho_{2}-\lambda\right)}{\left(\varrho_{2}-1\right)\left(\lambda-\varrho_{1}\right)}\right) /\left(\varrho_{2}-\varrho_{1}\right) p_{r} . \tag{101}
\end{equation*}
$$

The conversion factor for N due to a change in $p_{r}, f_{2}(\lambda)$, has been tabulated in the appendix as function of $\left(\lambda, \varrho_{1}, \varrho_{2}\right)$, and the correction to n due to a change in $p_{r}, g_{2}(\lambda)$, has been tabulated as function of $\left(\lambda, \varrho_{1}, \varrho_{2}\right)$ for $p_{r}=0.01$. Values of $g_{2}(\lambda)$ for other values of p_{r} may be found from the tabulated ones by dividing by $100 p_{r}$.

The above results may be formulated as the following theorem:
The optimum sampling plan corresponding to $\left(N, \lambda p_{r}, \lambda p_{s}, p_{1}, p_{2}, w_{2}\right), p_{r}=p_{s}$, is approximately equal to $\left(n^{*}+g_{2}(\lambda), c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ is the plan corresponding to $\left(N^{*}, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ with $N^{*}=N f_{2}(\lambda)$.

With the given set of tables this theorem is, however, not as important in practice as the previous ones, because the tables contain the optimum plans for so many
combinations of $\left(p_{r}, p_{1}, p_{2}\right)$ that an adjustment of the relative position of p_{r} within the interval $\left(p_{1}, p_{2}\right)$ will seldom be felt necessary from a practical point of view.

In table 6 an example has been shown of the effect of changing $p_{r}=p_{s}$ from 0.010 to 0.020 within the interval $\left(p_{1}, p_{2}\right)=(0.006,0.040)$.

From the inverse formula (79) we get

$$
\frac{\partial n_{N}}{\partial \log p_{r}}=-\frac{b_{3}(\varrho)}{\varphi}\left(1-\frac{1}{3 \log N}\right)
$$

which leads to

$$
\begin{equation*}
n_{N}\left(\lambda p_{r}\right)=n_{N}\left(p_{r}\right)-\frac{b_{3}}{\varphi}\left(1-\frac{1}{3 \log N}\right) \log \lambda \tag{102}
\end{equation*}
$$

An example of the application of this formula has been given in the following table for $N=50,000, p_{r}=p_{s}=0.010, \lambda=0.5$ and $2.5, p_{1}=0.002, p_{2}=0.040$, and $w_{2}=0.05$, which give $b_{3}=1.09$ and $1 / \varphi=177$.

Comparisons of exact and approximate sampling plans derived from (102).

	Exact		Approximate		
p_{r}	λ	n	c	n	c
0.005	0.5	350	4	370	4
0.010	1.0	315	4	-	-
0.025	2.5	250	4	245	4

11. Change of all parameters

The results of the preceding sections may be combined into a "chain formula" of the type

$$
\begin{equation*}
N_{c}\left(\lambda p_{r}, \varrho_{s} \lambda p_{r}, \lambda p_{1}, \lambda p_{2}, \lambda_{1} w_{2}\right)=N_{c}\left(p_{r}, p_{r}, p_{1}, p_{2}, w_{2}\right) / \lambda_{s} f_{1} \lambda \tag{103}
\end{equation*}
$$

and

$$
\begin{equation*}
n_{c}\left(\lambda p_{r}, \varrho_{s} \lambda p_{r}, \lambda p_{1}, \lambda p_{2}, \lambda_{1} w_{2}\right)=\left(n_{c}\left(p_{r}, p_{r}, p_{1}, p_{2}, w_{2}\right)+g_{1}\right) / \lambda \tag{104}
\end{equation*}
$$

where

$$
\lambda_{s}=\left(1+\frac{\varrho_{s}-1}{\left(1-\lambda_{1} w_{2}\right)\left(1-\varrho_{1}\right)}\right)^{-1}
$$

$f_{1}\left(\lambda_{1}\right)$ and $g_{1}\left(\lambda_{1}\right)$ being defined by (92) and (94) for $\varrho_{1}=p_{1} / p_{r}$ and $\varrho_{2}=p_{2} / p_{r}$.
In the master tables $p_{r}=p_{s}=0.01$ (or 0.10) and $w_{2}=0.05$ have been used as reference values. What has been denoted by λ and λ_{1} in the above formulas become $100 p_{r}\left(\right.$ or $\left.10 p_{r}\right)$ and $20 w_{2}$ if p_{r} and w_{2} denote the values for which the optimum plan is required.

Table 7.
Comparisons of exact sampling plans for $p_{r}=0.030, p_{s}=0.060, p_{1}=0.018$, $p_{2}=0.120, w_{2}=0.10$ and approximate plans derived from the master table for $p_{r}=p_{s}=0.010, p_{1}=0.006, p_{2}=0.040, w_{2}=0.05$.

N	Exact		Approximate		
50			51		
70	5	0	71		
100	5	0	102	10	0
200	10	0	204	10	0
300	10	0	306	25	1
500	25	1	510	25	1
700	30	1	714	30	1
1000	45	2	1020	45	2
2000	65	3	2040	65	3
3000	80	4	3060	80	4
5000	100	5	5100	100	5
7000	100	5	7140	100	5
10000	120	6	10200	120	6
20000	135	7	20400	155	8
30000	155	8	30600	155	8
50000	175	9	51000	175	9
70000	190	10	71400	195	10
100000	210	11	102000	210	11
200000	225	12	204000	230	12

We thus get the following rule for using the master table with $p_{r}=0.01$:
The optimum plan for $\left(N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)$ with $p_{r}<0.05$ is approximately equal to $\left(\left(n^{*}+g_{1}\right) / 100 p_{r}, c^{*}\right)$ where $\left(n^{*}, c^{*}\right)$ may be found by entering the master table with

$$
\begin{equation*}
N^{*}=N\left(100 p_{r}\right) f_{1}\left(20 w_{2}, \varrho_{1}, \varrho_{2}\right) /\left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right) \tag{105}
\end{equation*}
$$

$\varrho_{1}=p_{1} / p_{r}, \varrho_{2}=p_{2} / p_{r}$, and $g_{1}=g_{1}\left(20 w_{2}, \varrho_{1}, \varrho_{2}\right)$, the arguments for $\left(p_{1}, p_{2}\right)$ in the master table being $\left(\varrho_{1} / 100, \varrho_{2} / 100\right)$.

For $0.05<p_{r}<0.20$ the master table with $p_{r}=0.10$ should be used accordingly.

If $\left(\varrho_{1} / 100, \varrho_{2} / 100\right)$ are not to be found in the table then use the "nearest" argument or interpolate. One may also use the results in section 10 to change p_{r} in the master table so that the relations between $\left(p_{r}, p_{1}, p_{2}\right)$ in the table become closer to the ones for which the sampling plan is required. From a practical point of view, however, the master tables combined with the rule above will normally suffice.

An example has been given in Table 7. The conversion factor for N is found as

$$
3 f_{1}(2,0.6,4.0)\left(\left(1+\frac{30}{0.90 \times 12}\right)=3 \times 1.29 / 3.78=1.02 .\right.
$$

The agreement between the approximate and the exact solution is very good.
Using instead the method of section 8 we get $\lambda_{s}=1 / 3.78=0.265, \lambda=2.40$, $p_{1} / \lambda=0.0075$, and $p_{2} / \lambda=0.050$, i.e. $N^{*}=0.636 N$ and $n=n^{*} / 2.40$. Since the master table does not contain the argument 0.0075 we may as an approximation use 0.0070 which, however, will tend to give too small values of c.

The corresponding inverse formula takes the form

$$
\begin{gather*}
n_{N}\left(p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right)=\frac{1}{100 p_{r}}\left[n_{0}+\frac{1}{\varphi}\left\{\log \left(100 p_{r}\right)+b_{1} \log \left(20 w_{2}\right)\right.\right. \\
\left.\left.-\log \left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)\right\}\left(1-\frac{1}{3 \log N}\right)\right] \tag{106}
\end{gather*}
$$

where n_{0} denotes the sample size to be found in the master table for $p_{r}=0.01$, $\varrho_{1}=p_{1} / p_{r}, \varrho_{2}=p_{2} / p_{r}$, corresponding to the given lot size N.

As an example consider the determination of n for $N=50,000$ and the parameters given in Table 7. The value of $1 / \varphi$ is 293 for $p_{1}=0.006$ and $p_{2}=0.040$, and

$$
\begin{aligned}
& \left(1-\frac{1}{3 \log N}\right)=0.929, \text { so that we find } \\
& \qquad \begin{aligned}
n & =\frac{1}{3}(505+293(\log 3+0.61 \log 2-\log 3.78) 0.929) \\
& =\frac{1}{3}(505+23)=176
\end{aligned}
\end{aligned}
$$

in agreement with the (rounded) exact solution, $n=175$, given in Table 7.

12. Efficiency

In a previous paper [6] it has been proposed to define the efficiency of a sampling plan as

$$
\begin{equation*}
e(N, n, c)=R_{0}(N) / R(N, n, c) \tag{107}
\end{equation*}
$$

where $R_{0}(N)$ denotes the costs of the optimum plan and $R(N, n, c)$ denotes the costs of the plan in question.

We shall first discuss the efficiency of a sampling plan on the assumption that the optimum relationship between n and c has been used so that the loss in efficiency is due to using a wrong relationship between N and n. Looking at Fig. 2 it will be
seen that it does not matter much whether we use the value of c giving the absolute minimum of R or a neighbouring value of c provided n is chosen such that a (relative) minimum of R is obtained.

For a given set of parameters let $\left(n_{0}, c_{0}\right)$ be optimum for N_{0} and $\left(n_{1}, c_{1}\right)$ be optimum for N_{1}. From (26) it follows that

$$
R(N, n, c)=n+(N-n) h(n, c)
$$

where

$$
h(n, c)=\gamma_{1} Q\left(p_{1}\right)+\gamma_{2} P\left(p_{2}\right)
$$

Using the plan $\left(n_{1}, c_{1}\right)$ for lot size N_{0} (instead of N_{1}) we find

$$
\begin{align*}
R\left(N_{0}, n_{1}, c_{1}\right) & =n_{1}+\left(N_{0}-n_{1}\right) h\left(n_{1}, c_{1}\right) \\
& =n_{1}+\left(N_{0}-n_{1}\right)\left(R_{0}\left(N_{1}\right)-n_{1}\right) /\left(N_{1}-n_{1}\right) . \tag{108}
\end{align*}
$$

It is therefore rather simple by means of the function $R_{0}(N)$ to evaluate the efficiency of plans contained in the master table in case such plans are used for the wrong value of N. The resulting efficiency is

$$
\begin{equation*}
e\left(N_{0}, n_{1}, c_{1}\right)=\frac{R_{0}\left(N_{0}\right)}{n_{1}+\left(N_{0}-n_{1}\right)\left(R_{0}\left(N_{1}\right)-n_{1}\right) /\left(N_{1}-n_{1}\right)} . \tag{109}
\end{equation*}
$$

Since $R_{0}(N) \sim n+1 / \varphi_{0}$ we have asymptotically

$$
\begin{equation*}
e\left(N_{0}, n_{1}, c_{1}\right) \sim\left(n_{0}+\frac{1}{\varphi_{0}}\right) /\left(n_{1}+\frac{N_{0}-n_{1}}{N_{1}-n_{1}} \frac{1}{\varphi_{0}}\right) . \tag{110}
\end{equation*}
$$

Introducing $n_{0}=\left(\ln N_{0}\right) / \varphi_{0}+o\left(\ln N_{0}\right)$ and considering n_{1} as an arbitrary function of $N_{0}, n_{1}=g\left(N_{0}\right) / \varphi_{0}$ say, we find

$$
\begin{equation*}
e\left(N, n_{1}, c_{1}\right) \sim(\ln N) /\left(g(N)+N e^{-g(N)}\right) \tag{111}
\end{equation*}
$$

for $n_{1}=o(N)$, which is the result given without proof in [6].
For $g(N)=\lambda \ln N$ we get $e \rightarrow 1 / \lambda$ for $\lambda \geqq 1$ but $e \rightarrow 0$ for $0<\lambda<1$, i.e. if we use a semilogarithmic relationship between n and N differing from the correct one then it is important to use too large a sample. For $g(N)=N^{\lambda}, \lambda>0$, we get $e \rightarrow 0$.

A more accurate expression than (111) may be found by using all three term of (61) which leads to

$$
e\left(N_{0}, n_{1}, c_{1}\right) \sim\left(n_{0}+\frac{1}{\varphi_{0}}\right) /\left(n_{1}+\frac{1}{\varphi_{0}}\left(e^{\varphi_{0}\left(n_{0}-n_{1}\right)} \sqrt{\left.\left.\frac{n_{0}}{n_{1}}+\frac{n_{0}-n_{1}}{N_{1}-n_{1}}\right)\right) ~ . ~}\right.\right.
$$

Table 8.
Investigation of efficiency for sampling plans with an acceptance number deviating 1 from the optimum. ($e^{*}=$ asymptotic efficiency).

N	n_{0}	c_{0}	R	n_{1}	c_{1}	$100 e$	$100 e^{*}$
145	10	0	53	60	1	72	94
447	60	1	126	$\begin{array}{r} 10 \\ 115 \end{array}$	$\begin{aligned} & 0 \\ & 2 \end{aligned}$	$\begin{aligned} & 84 \\ & 86 \end{aligned}$	$\begin{aligned} & 94 \\ & 95 \end{aligned}$
1010	115	2	200	$\begin{array}{r} 60 \\ 170 \end{array}$	$\begin{aligned} & 1 \\ & 3 \end{aligned}$	$\begin{aligned} & 90 \\ & 92 \end{aligned}$	$\begin{aligned} & 95 \\ & 96 \end{aligned}$
1900	170	3	265	$\begin{aligned} & 115 \\ & 225 \end{aligned}$	$\begin{aligned} & 2 \\ & 4 \end{aligned}$	$\begin{aligned} & 93 \\ & 95 \end{aligned}$	$\begin{aligned} & 96 \\ & 97 \end{aligned}$
3350	225	4	326	$\begin{aligned} & 170 \\ & 280 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \end{aligned}$	$\begin{aligned} & 95 \\ & 96 \end{aligned}$	$\begin{aligned} & 96 \\ & 97 \end{aligned}$
5700	280	5	386	$\begin{aligned} & 225 \\ & 335 \end{aligned}$	$\begin{aligned} & 4 \\ & 6 \end{aligned}$	$\begin{aligned} & 96 \\ & 97 \end{aligned}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$
9530	335	6	444	$\begin{aligned} & 280 \\ & 390 \end{aligned}$	$\begin{aligned} & 5 \\ & 7 \end{aligned}$	$\begin{aligned} & 96 \\ & 97 \end{aligned}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$
15800	390	7	502	$\begin{aligned} & 335 \\ & 445 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$
25800	445	8	559	$\begin{aligned} & 390 \\ & 500 \end{aligned}$	$\begin{aligned} & \hline 7 \\ & 9 \end{aligned}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$
42100	500	9	616	$\begin{aligned} & 445 \\ & 555 \end{aligned}$	$\begin{array}{r} 8 \\ 10 \end{array}$	$\begin{aligned} & 97 \\ & 98 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$
68300	555	10	672	$\begin{aligned} & 500 \\ & 615 \end{aligned}$	$\begin{array}{r} 9 \\ 11 \end{array}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$	$\begin{aligned} & 98 \\ & 98 \end{aligned}$

This formula is, however, not of direct value because it contains N_{1} which is unknown in practice. A simple and practically useful approximation is the following

$$
\begin{equation*}
e\left(N_{0}, n_{1}, c_{1}\right) \sim\left(n_{0}+\frac{1}{\varphi_{0}}\right) /\left(n_{1}+\frac{1}{\varphi_{0}} e^{\varphi_{0}\left(n_{0}-n_{1}\right)}\right) . \tag{112}
\end{equation*}
$$

This formula will, however, give too large efficiencies for small values of n because the decision loss has been overestimated.

In connection with the various approximations developed in the preceding sections is has repeatedly been stated that the value of c found by using the approximations will normally not deviate more than 1 from the correct value (for $(N<200,000)$. It is therefore of importance to know the efficiency of a plan for which $\left|c_{1}-c_{0}\right|=1$.

If $\left|c_{1}-c_{0}\right|=a$ (constant) then $\left|n_{1}-n_{0}\right|=a \beta$ and $e \rightarrow 1$ for $N_{0} \rightarrow \infty$. Expanding the denominator of (112) we find for small values of $\varphi_{0} \alpha \beta$

$$
\begin{equation*}
e\left(N_{0}, n_{1}, c_{1}\right) \sim\left(n_{0}+\frac{1}{\varphi_{0}}\right) /\left(n_{0}+\frac{1}{\varphi_{0}}+\frac{1}{2} \varphi_{0} a^{2} \beta^{2}\right) \tag{113}
\end{equation*}
$$

which converges rather fast to 1 for $n_{0} \rightarrow \infty$ and $a=1$. By means of the results of section 6 it will be seen that this asymptotic efficiency (as a function of c_{0}) is independent of the "quality level".

An example has been given in Table 8. The costs for each optimum plan have been compared with the costs of using a neighbouring plan, i.e. $c_{1}=c_{0} \pm 1$. The efficiency has been compared with the asymptotic efficiency found from (112). It will be seen that the efficiency is larger than 0.90 for $c \geqq 2$ and that the asymptotic formula gives too high an efficiency for small N. (N has been chosen as the geometric mean of the smallest and largest N for each c). This conclusion is typical for the cases investigated.

The conversion formulas and tables show how sensitive the solution is to changes of the parameters. A change of w_{2} from 0.05 to 0.10 , say, means, that N has to be multiplied by a factor of about 1.3 and the corresponding n should be increased by about 30. (In most systems of sampling plans in practical use to-day the same plan is used for a rather large N-interval, the ratio between endpoints usually being 1.5 or larger). As an example consider the case with $p_{r}=p_{s}=0.010, p_{1}=0.006$ and $p_{2}=0.040$ as shown in the following table.

Optimum sampling plans.				
$w_{2}=0.05$				$w_{2}=0.10$
N	n	c	n	c
500	60	1	85	1
1000	115	2	140	2
5000	275	5	305	5
10000	335	6	405	7
50000	505	9	575	10
100000	610	11	635	11

For most lot sizes we find the same value of c and a difference in n of about 25 , in other cases the difference in c is 1 and the difference in n correspondingly larger. It is immediately clear that using the plans corresponding to $w_{2}=0.05$ if the true value of w_{2} is 0.10 does not lead to an essential loss in efficiency.

The conclusion is that even if the value of w_{2} used deviates from the true value by a factor of 2 the method will nevertheless lead to a sampling plan of very high efficiency.

Similar conclusions may be drawn for the other parameters by studying the conversion formulas.

The main reason why changes of p_{r} and w_{2} does not affect the optimum solution seriously is that p_{0} and φ_{0} are independent of p_{r} and w_{2}.

Since the most important relation in the system is

$$
c+\frac{1}{2}=p_{0}(n-\alpha)
$$

it is of importance to know how p_{0} depends on p_{1} and p_{2}.
From

$$
\frac{\partial \ln p_{0}}{\partial \ln p_{1}}=\frac{p_{0}-p_{1}}{q_{1} \ln \frac{q_{1}}{q_{2}}}>0 \quad \text { and } \frac{\partial \ln p_{0}}{\partial \ln p_{2}}=\frac{p_{2}-p_{1}}{q_{2} \ln \frac{q_{1}}{q_{2}}>0}
$$

it follows that p_{0} is an increasing function of as well p_{1} as p_{2}. Furthermore we have approximately

$$
\frac{\partial \ln p_{0}}{\partial \ln p_{1}}+\frac{\partial \ln p_{0}}{\partial \ln p_{2}} \sim 1 .
$$

Within the domain of variation tabulated the first term is on the average 0.35 and the second 0.65 .

The coefficient $p_{0} \alpha$ varies rather slowly with $\left(p_{1}, p_{2}\right)$.
It follows that p_{0} is known with a relative error of about the same size as the relative errors of p_{1} and p_{2}.

If the choice of p_{1} and p_{2} is doubtful then p_{1} should be chosen too large and p_{2} too small (by about half of the percentage error in p_{1}) because the two errors will tend to counterbalance one another and thus give the correct p_{0}. The reason for bringing the two parameters closer together in case of doubt lies also in the fact that φ_{0} is a decreasing function of p_{1} and an increasing function of p_{2}. Since $n \sim(\log N) / \varphi_{0}$ the proposed rule will lead to a larger sample size than the optimum one which normally gives a better efficiency than too small a sample.

Table 9 shows the efficiency of using a plan obtained by entering the master table by a wrong value of p_{1}, p_{2} or both. It is assumed that the true values of (p_{1}, p_{2}) are $(0.006,0.040)$ and optimum plans have been substituted by plans obtained by using neighbouring values of $\left(p_{1}, p_{2}\right)$ in the tables, i. e. the relative error of p_{1} is 17% and the relative error of p_{2} is 12.5% downwards and 25% upwards. The table shows that the efficiency in all cases is larger than 90% for $N<10,000$. For $N=200,000$, however, the efficiency falls to 58% in the worst case, i.e. the case where p_{2} is chosen 25% too large.

The results in the table support the statement above that in case of doubt it is important to use a large value of p_{1} and a small value of p_{2}.

A remark on the definition of efficiency. For a lot containing X defectives acceptance without inspection is cheaper than rejection without inspection for $X \leqq\left[N p_{r}\right]$. Classifying all lots in this way the average costs become

$$
K_{N m}=\sum_{X=0}^{\left[N p_{r}\right]}\left(N A_{1}+X A_{2}\right) f_{N}(X)+\sum_{X=\left[N p_{r}\right]+1}^{N}\left(N R_{1}+X R_{2}\right) f_{N}(X) .
$$

It is easily seen that $K_{N m} / N \rightarrow k_{m}$ for $N \rightarrow \infty$, see (15), and that $K_{N m}<N k_{m}=K_{m}$. It would be more correct to define efficiency as the ratio of costs in excess of $K_{N m}$ instead of K_{m} as in (107). This modification will increase the efficiencies for small N slightly whereas the above results regarding asymptotic efficiency will be unchanged. In Table 8 the first 5 efficiencies would be $83,87,89,91$, and 93 , whereas the remaining are unchanged, and in Table 9 the only change would be to increase 5 of the values of $100 e$ for $N=200$ by 1 .

13. An example

Consider now an example starting from the original cost functions. To show the various aspects of the method the example will be worked out in more detail than is necessary for routine applications.

Let the three cost functions be $k_{s}(p)=23+35 p, k_{r}(p)=16+35 p, k_{a}(p)=720 p$, the coefficients denoting costs per item in cents, say, i.e. the costs of sampling and testing is 23 cents per item in the sample and the costs of accepting a defective item is 720 cents etc., see section 2.

Let us further assume that lots are generated with probability $w_{1}=0.93$ from a binomially controlled process with $p_{1}=0.009$ and with probability $w_{2}=0.07$ from a process with $p_{2}=0.080$.

The costs may then be described as in the following table:

w	p	$k_{s}(p)$	$k_{r}(p)$	$k_{a}(p)$	$k_{m}(p)$	$\left\|k_{r}(p)-k_{a}(p)\right\|$
0.93	0.009	23.315	16.315	6.480	6.480	9.835
0.07	0.080	25.800	18.800	57.600	18.800	38.800
Average	0.014	23.489	16.489	10.058	7.342	11.863

From (12) we find

$$
p_{r}=(16-0) /(720-35)=0.0234
$$

from (28)
and from (22)

$$
p_{m}=0.93 \times 0.009+0.07 \times 0.0234=0.0100,
$$

$$
p_{s}=(23-0) /(720-35)=0.0336
$$

To find the optimum plan for $N=500$ from the master table with $p_{r}=p_{s}$ $=0.010$ we first have to find the conversion factor λ_{s} which corrects for the difference between p_{s} and p_{r}, i.e.

$$
\lambda_{s}^{-1}=1+\frac{336-234}{0.93(234-90)}=1.76
$$

To use the method of section 8 we find $\gamma_{2}=0.296, \lambda=1.97, p_{1} / \lambda=0.0046$ $\simeq 0.005, p_{2} / \lambda=0.041 \simeq 0.040$, and $N^{*}=1.97 N / 1.76=1.12 N=560$. From the master table we read $\left(n^{*}, c^{*}\right)=(60,1)$ which gives $n=60 / 1.97=30$ as the optimum sample size.

To illustrate the method of section 11 we have to find the conversion factor f_{1} and the correction g_{1} corresponding to the change from $w_{2}=0.05$ to 0.07 . Since $\varrho_{1}=90 / 234=0.385 \simeq 0.40$ and $\varrho_{2}=800 / 234=3.42 \simeq 3.50$ we have $f_{1}=1.13$ and $g_{1}=15$. We then enter the master table with

$$
N^{*}=N \times 2.34 \times 1.13 / 1.76=1.50 N=750
$$

and find $\left(n^{*}, c^{*}\right)=(60,1)$ which finally gives $(n, c)=(30,1)$ since $(60+15) / 2.34=32$.
To find the corresponding value of R we first compute

$$
\gamma_{1}=0.93(234-90) /(336-100)=0.567
$$

and

$$
\gamma_{2}=0.07(800-234) /(336-100)=0.168
$$

which lead to

$$
R=n+(N-n)\left(0.567 Q\left(p_{1}\right)+0.168 P\left(p_{2}\right)\right) .
$$

From a table of the binomial distribution one finds for $(n, c)=(30,1)$ that $Q\left(p_{1}\right)=0.02982$ and $P\left(p_{2}\right)=0.29579$ and consequently

$$
R=30+470 \times 0.0666=61.3 .
$$

The costs of sampling inspection and the average decision losses per lot are thus of nearly the same size.

Returning to the original monetary unit we find

$$
k-k_{m}=R\left(k_{s}-k_{m}\right) / 500=1.98
$$

and finally

$$
k=7.34+1.98=9.32 .
$$

We thus have the following conclusion:
The quality of submitted lots is such that on the average costs per item will be 7.34 cents if all lots are classified correctly, i. e. all lots from process No. 1 are accepted and all lots from process No. 2 are rejected. To decide whether to accept or reject we
inspect a sample of 30 items at the average costs of 0.97 cents per item of the lot. The decision losses will be 1.01 cents per item of the lot on the average. The first part of the costs, 7.34 , depends on the prior distribution and can only be reduced by producing (or buying) lots of better quality. The second part, 1.98, depends on the sampling plan used. Since we have here used the optimum plan any change in sample size or acceptance number will result in increased costs. The average costs of accepting all lots without inspection are 10.06 cents per item.

The two functions $k_{0}(p)=K_{0}(p) / N$ and $k(p)=K(p) / N$ have been shown in Fig. 1 for the example above.

14. General remarks

There exists already a great body of theories and tables for constructing single sampling attribute plans based on two specified quality levels (p_{1}, p_{2}) and some further requirements. To see how the present paper fits into this the most important systems have been listed below by stating the "further requirements" for each system:
(a). Specification of the producer's and the consumer's risks, see for instance Peach and Littauer [7] and Grubbs [8].
(b). Specification of the consumer's risk and minimization of the average amount of inspection for lots of process average quality $\left(p_{1}\right)$ in the case of rectifying inspection, see Dodge and Romig [9].
(c). Specification of the consumer's risk and minimization of the average costs for lots of process average quality $\left(p_{1}\right)$, i.e. a generalization of the Dodge-Romig LTPD system requiring specification of one cost parameter, see Hald [10].
(d). Specification of two cost parameters, p_{r} and p_{s}, and a weight, w_{2}, and minimization of the average costs, as for instance in the present paper.

It follows from the results of the present paper that from an economic point of view it is not advisable to fix the consumer's or the producer's risk. On the contrary the producer's and the consumer's risks should both tend to zero with increasing lot size. This theorem is valid not only for the double binomial prior distribution but for any prior distribution, and it is valid not only for the Bayes solution but also for the minimax solution ($p_{1}<p_{r}<p_{2}$), the only difference being the speed of the convergence. For a discrete prior distribution the risks tend to zero inversely proportional to N, see (63) and (64). These considerations lead to the result that if one wants a system with a fixed risk then the risk should be fixed to 50 per cent at a point between p_{1} and p_{2}. We may therefore increase the list of systems of sampling plans above by the following item:
(e). Minimization of average costs for lots of process average quality (p_{1}) under the restriction that $P\left(p_{0}\right)=1 / 2$. Such a system, named the IQL system (Indifference Quality Level) has been discussed by Hald, see [6] and [10], and will be further discussed in a forthcoming paper. This system requires the specification of p_{0} and
a cost parameter. In view of the asymptotic relation (66) between c and n it is clear that p_{0} should be determined from (52).

The simplest possible system based on the specification of two risks and having the same properties as the Bayes solution may be formulated as follows:
(f). Specification of the consumer's or the producer's risk as inversely proportional to lot size, and $P\left(p_{0}\right)=1 / 2$.

This system requires only the specification of one parameter (besides the two quality levels) and it is extremely simple to handle both mathematically and numerically. This is due to the fact that the equation $P\left(p_{0}\right)=1 / 2$ has the solution $c=n p_{0}$ $+\left(p_{0}-2\right) / 3$ (with sufficient accuracy for all practical applications, perhaps apart from the case $c=0$ where the exact solution may be easily found) and that the other equation, $Q\left(p_{1}\right)=\alpha / N$ say, may be solved with respect to N for related values of (n, c) from the first equation. Setting $c=0,1,2, \ldots$ and solving the first equation for n, the second equation gives $N=\alpha /\left(1-B\left(c, n, p_{1}\right)\right)$ which may easily be found by means of a table of the binomial (or the Poisson) distribution. The only difficulty lies in the choice of α. If the problem is fully specified one may naturally choose α as the coefficient of $1 / N$ in (63) and the system will then asymptotically give an approximation to the Bayes solution. The reason for using the simple system will, however, usually be that some of the parameters in the problem are unknown and in that case the choice of α will to some extent be arbitrary, just as in the other cases the choice of the producer's or the consumer's risk is arbitrary. This system of sampling plans will be discussed in more detail in the forthcoming paper on the $I Q L$ system.

Turning to applications it is important to notice that a system of sampling plans in practice often is required to serve several purposes. In particular we shall here stress (a) that the system should protect the consumer against deterioration of the prior distribution, (b) that the system should work as an incentive for the producer to produce better quality or at least to keep to the quality agreed upon, see Hill [11], and (c) that (average) costs should be minimized. The first two requirements are concerned with consequences of changes of the prior distribution and the problem should therefore really be formulated as a dynamic one. However, since a dynamic model at present is lacking we shall try to indicate how the Bayesian solution may be modified to take requirements (a) and (b) into account.

One of the arguments advanced against the Bayesian method in general has been that a prior distribution does normally not exist. This may be true in many fields but certainly not for industrial mass production with its effective planning and control of operations. Admittedly the prior distribution may change, but changes are usually rather small and slow within a given production period in which the same machinery, techniques, and raw materials are being used. We are here not concerned about isolated very poor lots which may occasionally occur since any sampling plan will detect such lots.

Published data on prior distributions are scarce. Whether the double binomial
distribution is a reasonable approximation to distributions occurring in practice is not known. According to the experience of the author mixed binomial distributions with beta-distributions as weight functions are rather common. (A paper analogous to the present one will present the corresponding theory and tables for the beta-distribution).

One of the drawbacks of the Bayesian solution from a practical point of view is that the solution may be acceptance (or rejection) without inspection. If one is not completely confident that the prior distribution used is the right one and is stable, then a sampling plan is required to guard against deterioration of the prior distribution. One possibility is to use the first or one of the first Bayesian sampling plans in the appropriate table. If that is not satisfactory one may in such cases use an IQL plan.

The same procedure may be used to satisfy requirement (a) above. It should first of all be noted that if a Bayesian sampling plan exists then some protection against deterioration of the prior distribution is automatically obtained and the protection may in the usual way be expressed by means of the OC curve. It is always easy when the plan has been found to compute the consumer's risk and then to decide whether the risk is sufficiently small. If the consumer's risk is too large one may again find a sufficiently large sample in the same table or turn to an $I Q L$ plan or a $L T P D$ plan.

The price to be paid for obtaining the required protection is naturally that the plan used will not minimize costs if the prior distribution holds. If the change in the value of c is not large the increase in costs will, however, be small.

For large lots the consumer's risk for the Bayesian sampling plan will usually be much smaller than 10 per cent so that the problem does only exist for small lots.

The incentive for the producer to keep to the specified quality is usually obtained by alternating between normal and tightened inscpection in a specific way such that the system reacts upon observed changes in the prior distribution. If it was possible to estimate in what way the distribution had changed the reaction could be made to depend on the change. In practice, however, one want to install tightened inspection as soon as possible on the basis of some over-all criterion, for example when the number of lots rejected exceeds some critical limit. A thorough theory does not exist but some rules have been found to work satisfactory in practice. The Military Standard 105 D uses the same sample size for normal and tightened inspection and a reduced acceptance number, c_{T}, for tightened inspection. The difference between the two acceptance numbers, $c_{N}-c_{T}$, equals 1 for $2 \leqq c_{N} \leqq 4$, 2 for $5 \leqq c_{N} \leqq 20$, and 3 for $c_{N} \geqq 21$. For $c_{N}=0$ or $1, c_{T}$ is usually equal to c_{N} but the sample size is increased for tightened inspection. Similar rules may be used for the present tables although it has to be realized that the resulting plans will not be minimum-cost plans. The main point is, that under normal conditions the plans will minimize costs and that the plans may be adjusted to changes in the prior distribution so that costs are minimized under the new conditions. If, however, the incentive aspect of sampling inspection is more important for the user of the system than to minimize costs in case of
change of the distribution then some form of tightened inspection may be introduced with the result that during periods of tightened inspection the plans will not minimize costs.

Acknowledgements

This paper has been on its way for a period of five years and I owe a debt of gratitude to the many collaborators I have had. In particular I wish to thank Mr. J. Vestergaard for making the first program for tabulating the exact solution which resulted in a basic set of tables of great value for all the subsequent analyses. Mr. Vestergaard also checked the accuracy of the first asymptotic expression. I am also most grateful to Mr. and Mrs. K. West Andersen who carried out the detailed numerical investigations of the asymptotic formulas, tabulated the conversion factors, made the final program for the tables, and checked the whole manuscript.

The tabulation was made possible by a grant from the Carlsberg Foundation.
The later part of the work has been supported by the Office of Naval Research (Nonr-N62558-3073). Reproduction in whole or in part is permitted for any purpose of the United States Government.

References

1. I. Weibull: A Method of Determining Inspection Plans on an Economic Basis. Bull. Intern. Stat. Inst., 33, 1951, 85-104.
2. H. C. Hamaker: Economic Principles in Industrial Sampling Problems: A General Introduction. Bull. Intern. Stat. Inst., 33, 1951, 105-122.
3. D. Guthrie and M. V. Johns: Bayes Acceptance Sampling Procedures for Large Lots. Ann. Math. Stat., 30, 1959, 896-925.
4. A. Hald: The Compound Hypergeometric Distribution and a System of Single Sampling Inspection Plans Based on Prior Distributions and Costs. Technometrics, 2, 1960, 275352 and 370-372.
5. D. Blackwell and J. L. Hodges: The Probability in the Extreme Tail of a Convolution. Ann. Math. Stat., 30, 1959, 1113-1120.
6. A. Hald: Efficiency of Sampling Inspection Plans for Attributes. Bull. Intern. Stat. Inst., 40, 1964, 681-697.
7. P. Peach and S. B. Littauer: A Note on Sampling Inspection. Ann. Math. Stat., 17, 1946, 81-84.
8. F. E. Grubbs: On Designing Single Sampling Inspection Plans. Ann. Math. Stat., 20, 1949, 242-256.
9. H. F. Dodge and H. G. Romig: Sampling Inspection Tables. John Wiley, New York, 2 ed. 1959.
10. A. Hald: Single Sampling Inspection Plans with Specified Acceptance Probability and Minimum Costs. Duplicated Report, Copenhagen, 1963.
11. I. D. Hill: Sampling Inspection and Defence Specification DEF-131. Journ. Roy. Stat. Soc., A, 125, 1962, 31-87.

Appendix

Master Tables of Sampling Plans

Tables of Conversion Factors

Summary of Conversion Formulas

All sampling plans in the master tables assume $p_{r}=p_{s}$ and $w_{2}=0.05$. In the first set of tables $p_{r}=10 \%$ and $\left(p_{1}, p_{2}\right)$ take on the values

$$
\begin{aligned}
& p_{1}=2.0,2.5,3.0,3.5,4.0,5.0,6.0,7.0 \% \\
& p_{2}=15.0,17.5,20.0,25.0,30.0 \% .
\end{aligned}
$$

In the second set of tables $p_{r}=1 \%$ and $\left(p_{1}, p_{2}\right)$ take on the values

$$
\begin{aligned}
& p_{1}=0.20,0.25,0.30,0.35,0.40,0.50,0.60,0.70 \% \\
& p_{2}=1.50,1.75,2.00,2.50,3.00,3.50,4.00,5.00,6.00,7.00 \% .
\end{aligned}
$$

Single Sampling Tables for $p_{1}=2.0 \%$

$p_{2}=15.0 \%$			$p_{2}=17.5 \%$			$p_{2}=20.0 \%$				$p_{2}=25.0 \%$				$p_{2}=30.0 \%$											
N	n	c	N	n	c	N		n	c	N		n	c	N		n	c								
1- 1460	Accept		1- 665	Accept		$1-$	334	Accept		$1-$	140	Accept		1		ccept									
1460-1530	16	2	$666-701$	16	2	$335-$	414	7	1	141-	149	6	1	$46-$		1	0								
1600- 1840	29	3	- 1020	18	2	479-	586	17	2	191-	259	8	1	$93-$		6	1								
2160-2630	313					727-	946	19	2					139	199	81									
			1170-1270	29	3					358-	396	16	2												
2630- 2760	43	4	1510-1850	31	3	1020-	1240	29	3	509-	682	18	2	316	346	15	2								
3180-3760	45	4	2270- 2710	43	4	1540-	1980	31	3	$945-$	1200	27	3	471-	679	17	2								
4560-4770	58	5	3280-4100	45	4	2200	2530	41	4	1590-	2240	29	3	$974-$	1400	25	3								
5530-6550	60					3120	3990	43	4					2030	2800	3									
			4410-4810	56	5					2380	2720	37	4												
7990-9560	74	6	760-7080	58	5	4690-	5040	53	5	3560	4880	39	4	2800	3970	34	4								
11300-14000	76	6	8530-10000	70	6	6200	7850	55	5	5910	7790	48	5	5750-	7850	36	4								
14000-16400	89	7	12200-15200	72	6	9860-	12100	66	6	10500-14200		50	5	7850-	11000	43	5								
19500-24300	91	7				15300-20400		68	6			15900-21600		45											
			16400-17400	83	7			$14200-$		16800	58					6									
24300-28200	104	8	20900-25700	85	7	20400-	23600		78	7	22200-	30800	60	6	21600-	29800	52	6							
33300-40300	106	8	$31300-35800$	97	8	29400-	37800	80	7	$34600-$	47100	69	7	$43000-$	58900	54	6								
42500-48000	119	9	43400-54100	99	8	$42500-$	45600	90	8	$63800-81900$$81900-99600$		71	7	58900-	80000	61	7								
56700-68400	121					56400-71700		92	8			115000-159000		63											
			59700-73500	111	9			79				8													
73800-81600	134	10	90200-113000	113	9	87600-1	08000		103	9	132000-200000		81	8	159000-200000		70								
96200-116000	136	10	113000-125000	124	10	136000-1	78000	105	9																
128000-138000	149	11	151000-188000	126	10	178000-200000		11510																	
163000-200000	151	11																							

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=2.5 \%$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=3.0 \%$

$p_{2}=15.0 \%$			$p_{2}=17.5 \%$			$p_{2}=20.0 \%$			$p_{2}=25.0 \%$				$p_{2}=30.0 \%$					
N	n	c	N	n	c	N	n	c	N				N	n				
1- 1760	Accept		1- 749	Accept		1- 396	Accept		1-	138	Accept		$1-\quad 57$	Accept				
1760- 2100	35	4	750- 823	14	2	397- 481	14	2	$139-$	178	6	1	58- 78	1	0			
2420- 2960	48	5	824- 980	24	3	636-730	24	3	248-	299	14	2	$79-109$	6	1			
3450-4180	61	6				923	26	3	404-	523	16	2	$167-209$	81				
			1250- 1340	35	4	- 1110												
4960-5910	74	7	1630-1990	37	4	1110- 1340	35	4	524-	602	23	3	210- 298	14	2			
7160-8350	87	8	1990-2200	47	5	1730-1920	37	4	$807-$	1060	25	3	$454-503$	16	2			
10300-11800	100	9	2710-3150	49	5	1920-2440	46	5	$1060-$	1150	32	4	504-708	223				
14200-15000	102	9							1530	2110	34							
			$3150-3600$	59	6	$3250-3470$	56	6					1130- 1590	30	4			
15000-16500	113	10	4460- 4970	61	6	$4370-5550$	58	6	2110	2830	42	5	2520-3460	38	5			
20000-21700	115	10	4970- 5840	71	7	$5550-6120$	67	7	4080-	5140	51	6	5500-7410	46	6			
21700-23200	126	11	$7300-7820$	73	7	7760-9380	69	7	7120	7910	53	6	11100-12000	486				
27900-31400	12811																	
			7820-9440	83	8	9380-10700	78	8	7910-	9280	60	7	12000-15700	54	7			
$31400-39000$	140	12	12200-15200	95	9	13700-15800	80	8	12700-	15200	62	7	23500-25700	56	7			
45200-54400	153	13	19100-24400	107	10	15800-18700	89	9	$15200-$	16600	69	8	25700-33000	62	8			
65000-75800	166	14				24200-26400	91	9	22400-29000		71	8	49100-54800	648				
			29700-31700	118	11													
93300-106000	179	15	39100-46300	120	11	26400-32600	100	10	29000-	39500	79	9	54800-68800	70	9			
128000-134000	181	15	46300-50400	130	12	44000-56500	111	11	54600-	69500	88	10	102000-116000	72	9			
134000-147000	192	16	62500-71800	132	12	73100-77200	121	12	97000-103000		90	10	116000-143000	$78 \quad 10$				
178000-193000	194	16				$97800-121000$	123	12										
			71800-80000	142	13				103000-1	22000	97	11						
193000-200000	205	17	99600-111000	144	13	121000-133000	132	13	168000-1	94000	99	11						
			111000-127000	154	14	169000-200000	13413		194000-200000		10612							
			159000-172000	156	14													
			172000-200000	166	15													

Single Sampling Tables for $p_{1}=3.5 \%$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=4.0 \%$

$p_{2}=15.0{ }_{0}$			$p_{2}=17.5 \%$			$p_{2}=20.0 \%$				$p_{2}=25.0 \%$				$p_{2}=30.0 \%$			
N	n		N	Accept				n									
1- 1950	Accept		1- 806			1-	402		cept	1 -	134		ept	1-	65	Acc	ept
1950- 2130	40	5	807- 923	21	3	403-	447	12	2	135-	151	5	1	66-	79	5	1
2260- 2850	52	6	$924-981$	30	4	487-	576	21	3	198-	276	13	2	119	156	7	1
2850-3090	63	7	1260- 1470	41	5	$736-$	944	31	4	359-	456	21	3	157	244	13	2
3670- 4130	75	8	1770-2210	52	6	1110	1190	40	5	632-	719	29	4	326-	442	20	3
4730- 5520	87	9	2470- 2650	62	7	$1530-$	1670	42	5	996-	1100	31	4	$640-$	760	27	4
6120-7390	99	10	$3420-3930$	73	8	$1670-$	1880	50	6	$1100-$	1490	38	5	1140	1240	29	4
7920-10200	111	11	4780-5830	84	9	$2490-$	2950	60	7	1860-	2220	46	6	$1240-$	1860	35	5
10200-10800	122	12	6660-8660	95	10	$3730-$	4610	70	8	3130	4530	55	7	$2320-$	3010	42	6
13200-14400	134	13	9170-10100	105	11	$5550-$	7190	80	9	$5210-$	6550	63	8	$4300-$	4870	49	7
17000-19100	146	14	12700-14900	116	12	8210	11200	90	10	8620 -	9530	71	9	7280	7980	51	7
22000-25500	158	15	17500-21900	127	13	$12000-$	13200	99	11	$13300-$	14200	73	9	7980	11400	57	8
28400-33900	170	16	24100-25500	137	14	17500-	20300	109	12	$14200-$	18900	80	10	$14600-$	18000	64	9
36600-45100	182	17	33000-37200	148	15	25700-	31100	119	13	$23400-$	27100	88	11	$26800-$	42500	72	10
47200-60400	194	18	45500-54300	159	16	$37700-$	47600	129	14	38300-	53700	97	12	$48500-$	65700	79	11
60400-64700	205	19	62600-79400	170	17	$55200-$	73000	139	15	62500-	76100	105	13	87600-1	103000	86	12
77800-85600	217	20	85500-91700	180	18	79900-	85600	148	16	103000-1	51000	114	14	158000-200	200000	94	13
100000-113000	229	21	117000-133000	191	19	115000-1	30000	158	17	165000-2	200000	122	15				
129000-150000	241	22	160000-200000	202	20	168000-2	00000	168	18								
165000-200000	253	23															

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=5.0 \%$

Single Sampling Tables for $p_{1}=6.0 \%$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
(Continued on next page)
Single Sampling Tables for $p_{1}=6.0 \%$ (Continued)

$p_{2}=15.0 \%$			$p_{2}=17.5 \%$			$p_{2}=20.0 \%$			$p_{2}=25.0 \%$			$p_{2}=30.0 \%$		
N	n	c	N	n	${ }^{\text {c }}$	N	n	c	N	n	c	N	n	c
17200-19600	231	25	14700-17500	180	21	20000-24800	161	20	33900-42500	128	18	46200-67600	102	16
19600-22200	241	26	17500-19500	189	22	24800-27500	169	21	46500-51600	135	19	67600-80200	108	17
22200-25200	251	27	20900-22100	198	23	$31100-38600$	178	22				102000-149000	115	18
25200- 28600	261	28	25000-29700	208	24	38600-43600	186	23	63800-86100	143	20	149000-183000	121	19
28600-32500	271	29				48400-60000	195	24	86100-109000	150	21			
			29700-35300	217	25				117000-132000	157	22			
32500-36800	281	30	35300-41900	226	26	60000-69200	203	25	161000-200000	165	23			
36800-40600	291	31	41900-46700	235	27	75000-92900	212	26						
41900-45000	301	32	50100-52700	244	28	92900-109000	220	27						
47600-49900	311	33	59700-70800	254	29	116000-144000	229	28						
54100-55400	321	34				144000-177000	237	29						
			70800-83900	263	30									
61500-69700	332	35	83900-99300	272	31	177000-187000	245	30						
69700-79000	342	36	99300-110000	281	32									
79000-89400	352	37	118000-124000	290	33									
89400-101000	362	38	141000-167000	300	34									
101000-115000	372	39	167000-200000		35									
115000-130000	382	40												
130000-142000	392	41												
147000-157000	402	42												
167000-174000	412	43												
190000-193000	422	44												

Single Sampling Tables for $p_{1}=7.0 \%$

$p_{2}=15.0 \%$			$p_{2}=17.5 \%$				$p_{2}=20.0 \%$				$p_{2}=25.0 \%$				$p_{2}=30.0 \%$				
N	Accept		N		$n \quad c$		N		$n \quad c$		N		$n \quad c$		N		$n \quad c$		
1- 1960				668	Accept		$1-$	287	Accept			73	Accept		1.	19	Accept		
	Accept						$288-$	335	17	3		101	5	1					
60- 2030	73	10	669-	706	31	5	336-	357	24	4	102	129	11	2	20	36	1	0	
2030-2220	82	11	$707-$	35	39	6					$161-$	211	18	3	$37-$	45	5	1	
2220- 2260	91	12	823-	958	48	7	424	462	32	5	6	331	25	4	$76-$	88	11	2	
2440-2680	101	13	959	1120	57	8	$532-$	591	40	6					$135-$	213	18	3	
2680	110	14	1120	1220	65		663	746	48	7	332	460	32	5	214	324	24 4		
							818-	934	56	8	461-	627	39	6					
2940-3240	120	15	1300-	1520	74	10	1000-	1160	64	9	$628-$	837	46	7	325-	478	30	5	
3240-3430	129	16	1520-	1760	83	11					$838-$	892	52	8	479 -	662	36	6	
$3560-3920$	139	17	1760-	1970	91	12	1220-	1430	72	10	1110-	1220	59	9	$701-$$1010-$	9121240	42		
3920-4230	148	18	2040-	2360	100	13	1490	1800	80	11							48	8	
4310-4750	1581	19	2360	2450	108	14	1800	2170	88	12	$\begin{aligned} & 1470- \\ & 1930- \end{aligned}$	1660	66	10	1460	1690	54		
							2170	2620	96	13		2250	73	11					
4750-5210	167	20	2720-	30	117	15	2620	3150	104	14	2520	3040	80	12	2080-	2280	60	10	
5210- 5740	177	21	3130-	3610	126	16					3290	4100	87	13	2980-	4180	67	11	
5740-6310	186	22	3610	3820	134	17	3150	3780	112	15	4280 -	5550	94	14	$4180-$	5860	73	12	
6310-6920	196	23	4150	4760	143	18	3780	4540	120	16					$5860-$	8180	79	13	
6920-7620	205	24	4760-	5470	152	19	4540-	5430	128	17	5550	220	101	15	8180-11400		85	14	
							5430	6490	136	18	7220	9390	108	16					
7620-8350	215	25	5470-	5880	160	20	6490-	7760	144	19	9390	12200	115	17	11400-	15100	91	15	
8350-9170	224	26	6260-	7190	69	21					12200-	15800	122	18	16000-	20000	97	16	
9170-9420	233	27	7190-	8220	178	22	7760	9260	152	20	15800	20300	129	19	22500	26400	103	17	
10000-11000	243	28	8220-	8990	186	23	9260	11000	160	21					$31500-$	34900	109	18	
11000-11500	252	29	9380-10800		195	24	11000-	13100	168	22	20300-	21500	135	20	44400-61500		116	19	
					13100-		15600	176	23	26100	28500	142	21						
12100-13300	262	30	10800-	12300		204	25	15600	- 18600	184	24	$\begin{aligned} & 33500- \\ & 43100- \end{aligned}$	$\begin{aligned} & 37800 \\ & 50200 \end{aligned}$	149	22	61500-85100		$122 \quad 20$	
13300-14000	271	31	12300	13700	212	26	23								85100-1	117000	128	21	
14500-15900	281	32	$14000-$	16000	221	27	18600-	22100	192	25	55300	66700	163	24	117000-1	162000	134	22	
15900-17100	290	33	$16000-$	16400	229	28	$22100-$	26300	200	26					162000-2	200000	140	23	
17400-19100	300	34	18200-	20700	238	29	26300-	31200	208	27	70900-	90500	170	25					

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+1, c)$ as optimum plan.
Mat.Fys.Skr.Dan.Vid.Selsk. 3, no. 2.
Single Sampling Tables for $p_{1}=0.20 \%$

Single Sampling Tables for $p_{1}=0.20 \%$

Single Sampling Tables for $p_{1}=0.25 \%$

$p_{2}=3.50 \%$		$p_{2}=4.00 \%$		$p_{2}=5.00 \%$			$p_{2}=6.00 \%$			$p_{2}=7.00 \%$		
N	$n \quad c$	N	$n \quad c$	N	n	c	N	n	c	N	n	c
1- 259	Accept	1- 154	Accept	$1-75$	Acce		$1-45$	Acc		1 - 30	Acc	
260- 370	50	155- 220	50									
554- 65	150	320- 486	150	76- 114	5	0	46- 74	5	0	31- 55	5	0
				171- 258	15	0	119-185	15	0	93- 151	15	0
658-736	$55 \quad 1$	$556-618$	$55 \quad 1$	414- 453	25	0	304- 404	25	0	260- 365	25	0
846- 984	65	728 - 866	$65 \quad 1$									
1170- 1410	75	1050- 1310	$75 \quad 1$	454- 533	55	1	405- 542	55	1	366- 451	50	1
1750- 2120	$85 \quad 1$	1680- 2000	$85 \quad 1$	$660-831$	65	1	$712-960$	65	1	$615-864$	60	1
				1080- 1440	75	1	1360-1830	75	1	1280-1820	70	1
2120- 2210	$135 \quad 2$	2000- 2160	$130 \quad 2$									
2550- 2980	$145 \quad 2$	2560-3070	$140 \quad 2$	1870- 2230	120	2	1830- 2310	110	2	1820- 2230	100	2
$3530-4260$	$155 \quad 2$	3750- 4700	1502	2780-3550	130	2	3030- 4100	120	2	3060-4360	110	2
5270-5790	$165 \quad 2$			4660-6290	140	2	5800-6920	130	2	6570-7600	120	2
		5880-6570	2053									
5790-6690	$220 \quad 3$	7830-9480	2153	6290- 6640	180	3	6920-8730	165		7600-9960	150	3
7820- 9270	$230 \quad 3$	11700-14800	2253	8230-10400	190	3	11500-15700	175	3	13800-19900	160	3
11200-13800	$240 \quad 3$			13500-18100	200	3	22300-24600	185	3			
		16300-19100	$280 \quad 4$							30000-42800	200	4
14800-16600	300	22900-27900	$290 \quad 4$	20000-23300	245	4	24600-31700	220	4	60000-87800	210	4
19500-23100	310	34800-43700	$300 \quad 4$	29200-37400	255	4	42000-57300	230	4			
27800-34300	$320 \quad 4$			49400-62100	265	4				115000-131000	245	5
		43700-45500	$350 \quad 5$				84900-112000	275	5	180000-200000	255	5
36700-40300	$380 \quad 5$	54200-65500	$360 \quad 5$	62100-80400	310	5	149000-200000	285	5			
47200-55900	$390 \quad 5$	80400-101000	$370 \quad 5$	102000-132000	320	5						
67400-82800	$400 \quad 5$											
		116000-127000	$425 \quad 6$	186000-200000	370	6						
89700-96200	$460 \quad 6$	152000-184000	4356									
113000-133000	$470 \quad 6$											
160000-200000	$480 \quad 6$											

[^0]

[^1]

[^2]Single Sampling Tables for $p_{1}=0.40 \%$

[^3]Mat.Fys.Skr. Dan. Vid.Selsk. 3, no. 2.
Single Sampling Tables for $p_{1}=0.40 \%$

$p_{2}=3.50 \%$			$p_{2}=4.00 \%$			$p_{2}=5.00 \%$				$p_{2}=6.00 \%$				$p_{2}=7.00 \%$			
N	n	c	N	n	c	N		n	c	N		n	c	N		n	c
1- 249	Accept		1- 133	Accept		1-	59	Accept		1 -	33	Accept		1 -	21	Accept	
250	5	0	134- 199	5	0		94	5			59	50		22	43	50	
			312- 406	15			235	15	0	98	159	15	0	76-	128	15	0 0
497- 526	45	1															
608- 714	55	1	407- 482	50	1	324	387	50	1	281-	373	50	1	$249-$	293	45	1
864-1080	65	1	579-710	60	1	488-	630	60	1	497-	691	60	1	402-	575	55	1
			$903-1170$	70	1	$854-$	1050	70	1	1000-	1340	100	2	889-	972	65	1
1290- 1520	120	2								1800-	2570	110	2				
1800- 2180	130	2	1170-1350	115	2	1050	1170	105	2					973-	1150	90	2
2770-3270	190	3	1620- 2000	125	2	$1460-$	1890	115	2	2860 -	3190	145	3	$1600-$	2350	100	2
3890- 4730	200	3	2560- 2720	135	2	$2570-$	2730	125	2	4220 -	5830	155	3	3050-	4030	135	3
										7680	9530	195	4	$5730-$	8830	145	3
5600-6610	260	4	2720-3200	180	3	$2730-$	3020	160	3	12900-	18200	205	4				
7880- 9640	270	4	3890- 4860	190	3	$3800-$	4950	170	3					$8830-$	9820	175	4
10900-13000	330	5	5860-7200	245	4	$6600-$	7400	215	4	20100-	28000	245	5	$13600-$	20000	185	4
15500-19100	340	5	8840-11200	255	4	9390	12300	225	4	$38600-$	51000	255	5	$25500-$	32200	220	5
										$51000-$	60900	290	6	$45700-$	71500	230	5
20700-25000	400	6	12100-13000	305	5	$15500-$	17700	270	5	81900-1	15000	300	6				
30000-37000	410	6	15800-19600	315	5	$22600-$	29800	280	5					71500-1	05000	265	6
39000-47600	470	7	24700-28000	370	6	$35800-$	41700	325	6	130000-1	74000	340	7	153000-2	00000	275	6
57400-72300	480	7	34100-42700	380	6	$53500-$	71000	335	6								
72300-75900	535	8	50000-59500	435	7	81500-	97500	380	7								
90000-109000	545	8	73200-92500	445	7	125000-1	167000	390	7								
134000-142000	605	9	100000-126000	500	8	184000-2	200000	435	8								
169000-200000	615	9	156000-200000	510	8												

[^4]
$\boldsymbol{p}_{1}=\mathbf{0 . 5 0} \%$
Single Sampling Tables for $p_{1}=0.50 \%$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+5, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=0.60^{\circ}{ }_{0}$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+5, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=0.60 \%$

For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+5, c)$ as optimum plan.
Single Sampling Tables for $p_{1}=0.70 \%$

$p_{2}=1.50 \%$			$p_{2}=1.75 \%$			$p_{2}=2.00 \%$			$p_{2}=2.50 \%$			$p_{2}=3.00 \%$			
N	n	c	N	n	c	N	n	c	N	n	c	N	n	c	
1-21600	Accept		1- 7440	Accept		1- 3220	Accept		1- 826	Accept		1- 220	Accept		
21600-22400	800	11	7440-8330	380	6	3220-3300	155	3	827- 902	40	1	221-365	5	0	
22400-23500	890	12	8330- 9140	465	7	$3470-3630$	230	4	1050-1120	100	2				
24300-25500	985	13	9550-10100	550	8	4090-4250	240	4	1290	110	2	366- 425	45	1	
26400-27700	1080	14	11000-12600	640	9	- 200						$503-612$	55	1	
						4250- 4470	310	5	1580-1680	170	3	52- 885	110	2	
28800-30100	1175	15	12600-13600	725	10	5050-5220	320	5	1930- 2260	180	3	1050	$120 \quad 2$		
31300-32800	1270	16	14500-15000	810	11	5220- 5460	390	6	2260- 2360	240	4				
34200-35700	1365	17	16500-18300	900	12	$6170-638$	400	6	2700	250	4	1270-1320	$170 \quad 3$		
37200-38800	1460	18	18900-19900	985	13							1550-1860	180	3	
40600-42200	1555	19	21600-24600	1075	14	$6380-6600$	470	7	3130-3660	315	5	1950-2130	235	4	
						$7450-7760$	480	7	4200- 4820	385	6	2520-2880	245	4	
44300-45900	1650	20	24600-26400	1160	15	7760-8930	555	8	5540-6260	455	7				
48300-49900	1745	21	28000-31800	1250	16	9360-10600	635	9	7230-8020	525	8	2880-3290	300	5	
52600-54200	1840	22	31800-34700	1335	17				9340-10200	595	9	3950-4120	310	5	
57300-58900	1935	23	36100-37500	1420	18	11200-12600	715	10				$4120-5000$	365	6	
62500-63900	2030	24	41000-45400	1510	19	13400-14800	795	11	12000-12800	665	10	$5750-6280$	425	7	
						16000-17300	875	12	15300-16100	735	11	7500-	435	7	
68000-69300	2125	25	46400-48900	1595	20	19000-20200	955	13	18800-19500	745	11				
74100-75200	2220	26	52600-59400	1685	21	22400-23600	1035	14				7970- 9250	490	8	
80700-87800	2320	27	59400-63600	1770	22				19500-23400	810	12	10900-11400	550	9	
87800-95500	2415	28	67300-75900	1860	23	26500-27400	1115	15	24700-29200	880	13	13600-14900	560	9	
95500-104000	2510	29	75900-82500	1945	24	31300-36800	1200	16	31200-36200	950	14	$20200-24000$	615	10	
						36800-41900	1280	17					680	11	
104000-113000	2605	30	85700-88500	2030	25	43300-48400	1360	18	39400-44800	1020	15				
113000-123000	2700	31	96700-107000	2120	26	50800-55800	1440	19	49500-55400	1090	16	27200-29100	740	12	
123000-133000	2795	32	109000-114000	2205	27				62200-68300	1160	17	34900-36700	750	12	
133000-145000	2890	33	123000-138000	2295	28	59500-64400	1520	20	78000-84200	1230	18	36700-41800	805	13	
145000-158000	2985	34	138000-147000	2380	29	69700-74200	1600	21	97700-104000	1300	19		870	14	
						81600-85400	1680	22				$66100-72200$	930	15	
158000-171000	3080	35	156000-176000	2470	30	95400-98200	1760	23	122000-127000	1370	20				
171000-186000	3175	36	176000-190000	2555	31	112000-130000	1845	24	153000-183000	1445	21	88300-103000	995	16	
186000-200000	3270	37	198000-200000	2640	32				192000-200000	1515	22		1055	17	
						130000-148000	1925	25				$\begin{aligned} & 149000-158000 \\ & 158000-176000 \end{aligned}$	1065	17	
						152000-169000	2005	26					112018		
						177000-194000	2085	27							

Relation between p_{r} and w_{2} for fixed ($p_{10}, p_{20}, \gamma_{2}$).
Use the same sampling plan for $w_{2}=0.05$ and $p_{r 0}=0.01(0.10)$ as for w_{2} and $p_{r}=0.01 f(0.10 f)$ where f is given in the table.

$100 \mathrm{w}_{2}$	1.5	2.0	$\begin{aligned} \varrho_{2}= & p_{20} / p_{r 0} \\ & 3.0 \end{aligned}$	5.0	7.0	$\begin{gathered} \varrho_{1} \\ =p_{10} / p_{r 0} \end{gathered}$
1	0.51	0.44	0.40	0.38	0.37	0.2
	0.78	0.77	0.76	0.76	0.76	0.7
2	0.70		0.58	0.55	0.53	0.2
	0.85	0.84	0.83	0.82	0.82	0.7
3	0.83	0.78	0.73	0.70	0.69	0.2
	0.91	0.89	0.89	0.88	0.88	0.7
4	0.93	0.90	0.87	0.86	0.85	0.2
	0.96	0.95	0.94	0.94	0.94	0.7
5	1.00	1.00	1.00	1.00	1.00	0.2
	1.00	1.00	1.00	1.00	1.00	0.7
6	1.06	1.09	1.11	1.14	1.15	0.2
	1.04	1.05	1.05	1.06	1.06	0.7
7	1.10	1.16	1.22	1.27	1.29	0.2
	1.07	1.09	1.11	1.12	1.12	0.7
8	1.14	1.22	1.31	1.39	1.43	0.2
	1.10	1.13	1.16	1.17	1.18	0.7
9	1.18	1.28	1.40	1.51	1.56	0.2
	1.12	1.17	1.21	1.23	1.24	0.7
10	1.20	1.33	1.48	1.63	1.69	0.2
	1.15	1.20	1.25	1.29	1.30	0.7
12	1.25	1.41	1.63	1.84	1.95	0.2
	1.19	1.27	1.34	1.40	1.42	0.7
14	1.28	1.48	1.75	2.03	2.19	0.2
	1.22	1.33	1.43	1.51	1.54	0.7
16	1.31	1.54	1.86	2.22	2.41	0.2
	1.25	1.38	1.51	1.62	1.67	0.7
18	1.33	1.58	1.95	2.38	2.63	0.2
	1.27	1.42	1.59	1.72	1.79	0.7
20	1.35	1.63	2.03	2.54	2.84	0.2
	1.29	1.46	1.66	1.83	1.91	0.7

Table of b_{1}, b_{2}, and b_{3}.

$\begin{aligned} & \varrho_{1} \\ & = \\ & p_{1} / p_{r} \end{aligned}$	1.5	2.0	$=p_{2} / p_{r}$	5.0	7.0	
0.2	0.63	0.64	0.65	0.66	0.67	b_{1}
	0.24	0.27	0.31	0.35	0.37	b_{2}
	1.42	1.29	1.15	1.03	0.96	b_{3}
0.3	0.61	0.62	0.64	0.65	0.65	b_{1}
	0.19	0.23	0.27	0.31	0.34	b_{2}
	1.69	1.48	1.28	1.11	1.03	b_{3}
0.4	0.60	0.61	0.63	0.64	0.64	b_{1}
	0.16	0.19	0.24	0.29	0.32	b_{2}
	1.99	1.69	1.41	1.19	1.08	b_{3}
0.5	0.59	0.60	0.62	0.63	0.63	b_{1}
	0.13	0.17	0.21	0.27	0.30	b_{2}
	2.33	1.91	1.54	1.27	1.14	b_{3}
0.6	0.58	0.59	0.61	0.62	0.62	b_{1}
	0.11	0.15	0.19	0.25	0.28	b_{2}
	2.74	2.15	1.68	1.34	1.19	b_{3}
0.7	0.58	0.59	0.60	0.62	0.62	b_{1}
	0.09	0.13	0.18	0.23	0.26	b_{2}
	3.24	2.42	1.82	1.42	1.25	b_{3}

Conversion factor f_{2} for N due to a change in $p_{r}=p_{s}$ for fixed $\left(p_{1}, p_{2}, w_{2}\right)$. Use $N^{*}=N f_{2}$ as argument in the master table to find $\left(n^{*}, c^{*}\right)$. $p_{r}=p_{s}=0.01 \lambda$ or $0.10 \lambda,\left(p_{1}, p_{2}, w_{2}\right)$ are given in the master tables, $\varrho_{1}=100 p_{1}$ or $10 p_{1}, \varrho_{2}=100 p_{2}$ or $10 p_{2}$.

$\varrho_{2} \quad \varrho_{1}$	$\lambda=0.50$	0.60	0.70	0.80	0.90	1.00	1.25	1.50	1.75	2.00	3.00
0.2	1.80	1.52	1.33	1.18	1.08	1.00	-	-	-	-	
0.3	2.21	1.79	1.50	1.28	1.12	1.00	-	-	-	-	
1.50 .4	-	2.11	1.69	1.38	1.16	1.00	-	-	-	-	
0.5	-	-	1.90	1.50	1.21	1.00	-	-	-	-	
0.6	-		-	1.64	1.27	1.00	-	-	-	-	
0.7	-	-	-	-	-	1.00	-	-	-	-	-
(0.2	1.69	1.47	1.30	1.18	1.08	1.00	0.87	-	-	-	-
0.3	1.92	1.63	1.41	1.24	1.10	1.00	0.82	-	-	-	
2.00 .4	-	1.79	1.52	1.30	1.13	1.00	0.78	-	-	-	
2.00 .5	-	-	1.62	1.36	1.16	1.00	0.73	0.58	-	-	
0.6	-	-	-	1.42	1.19	1.00	0.69	0.52	-	-	
0.7	-	-	-	-	1.21	1.00	0.65	0.47	-	-	-
0.2	1.53	1.38	1.25	1.15	1.07	1.00	0.88	0.80	-	-	
0.3	1.64	1.46	1.31	1.19	1.08	1.00	0.85	0.74	0.67	-	
3.00 .4	-	1.52	1.36	1.22	1.10	1.00	0.82	0.70	0.62	0.56	
$3.0 \mid 0.5$	-	-	-	1.24	1.11	1.00	0.80	0.66	0.57	0.50	-
0.6	-	-	-	-	1.12	1.00	0.78	0.63	0.53	0.46	-
0.7	-	-	-	-	-	1.00	0.76	0.60	0.49	0.41	-
0.2	1.39	1.28	1.19	1.12	1.05	1.00	0.89	0.82	0.76	0.72	-
0.3	-	1.31	1.22	1.13	1.06	1.00	0.88	0.79	0.72	0.67	-
5.00 .4	-	-	1.23	1.14	1.07	1.00	0.86	0.76	0.69	0.63	0.50
5.00 .5	-	-	-	1.14	1.07	1.00	0.85	0.74	0.66	0.60	0.46
0.6	-	-	-	-	-	1.00	0.85	0.73	0.65	0.58	0.42
0.7	-	-	-	-	-	1.00	0.85	0.73	0.63	0.56	0.39
(0.2	1.31	1.23	1.16	1.10	1.05	1.00	0.91	0.84	0.79	0.74	0.65
0.3	-	1.24	1.17	1.11	1.05	1.00	0.89	0.81	0.75	0.70	0.59
70.4	-	-	-	1.11	1.05	1.00	0.89	0.80	0.74	0.68	0.55
7.0.5	-	-	-	-	1.05	1.00	0.89	0.79	0.72	0.66	0.52
0.6	-	-	-	-	-	1.00	0.89	0.79	0.72	0.65	0.50
0.7	-	-	-	-	-	1.00	0.90	0.80	0.72	0.65	0.48

Correction g_{2} to n^{*} due to a change in $p_{r}=p_{s}$.
Reference value $p_{r}=p_{s}=0.010 . n=n^{*}+g_{2}$.

$\varrho_{2} \quad \varrho_{1}$	$\lambda=0.50$	0.60	0.70	0.80	0.90	1.00	1.25	1.50	1.75	2.00	3.00
$(0.2$	130	100	70	50	25	0	-	-	-	-	-
0.3	160	120	85	55	30	0	-	-	-	-	-
5 0.4	-	150	105	65	35	0	-	-	-	-	-
1.500 .5	-	-	135	85	40	0	-	-	-	-	-
0.6	-	-	-	115	50	0	-	-	-	-	-
0.7	-	-	-	-	-	0	-	-	-	-	-
(0.2	75	55	40	25	15	0	-30	-	-	-	-
0.3	95	70	50	30	15	0	-35	-	-	-	-
0.4	-	90	60	35	15	0	-40	-	-	-	-
2.00 .5	-	-	80	45	20	0	-45	- 90	-	-	-
0.6	-	-	-	60	25	0	- 55	- 105	-	-	-
0.7	-	-	-	-	40	0	-70	- 125	-	-	-
0.2	40	30	20	15	5	0	- 15	- 25	-	-	-
0.3	55	40	25	15	5	0	-15	- 30	-45	-	-
${ }_{0} 0.4$	-	50	30	20	10	0	-20	- 35	- 50	-65	-
0.5	-	-	-	25	10	0	-20	- 40	- 55	- 70	-
0.6	-	-	-	-	15	0	-25	- 45	-60	-80	-
0.7	-	-	-	-	-	0	-30	- 55	- 75	-90	-
0.2	20	15	10	5	5	0	- 5	- 15	-20	- 20	-
0.3	-	20	15	10	5	0	- 10	- 15	-20	-25	-
5.00 .4	-	-	15	10	5	0	- 10	- 15	-20	- 25	-45
5.00 .5	-	-	-	10	5	0	-10	- 20	-25	-30	- 50
0.6	-	-	-	-	-	0	- 10	- 20	-30	- 35	- 55
0.7	-	-	-	-	-	0	-15	- 25	-35	-40	-60
0.2	15	10	5	5	0	0		- 10	- 10	- 15	- 25
0.3	-	15	10	5	0	0	- 5	- 10	-10	-15	-25
7.00 .4	-	-	-	5	5	0	- 5	- 10	-15	-15	- 25
${ }^{7.0} 0.5$	-	-	-	-	5	0	- 5	- 10	-15	-20	-30
0.6	-	-	-	-	-	0	- 10	- 15	-20	-20	-35
0.7	-	-	-	-	-	0	-10	- 15	-20	-25	-35

For $p_{r}=p_{s}=0.10$ the correction is $g_{2} / 10$ (rounded down).

Conversion factor f_{1} for N due to a change in w_{2}.
Reference value of $w_{2}=0.05, p_{s}=p_{r}$.
Use $N^{*}=N f_{1}$ as argument in the master table to find (n^{*}, c^{*}).

$100 w_{2}$	1.5	2.0	$\begin{array}{r} p_{2} / p_{r} \\ 3.0 \end{array}$	5.0	7.0	p_{1} / P_{r}
1	0.54	0.56	0.58	0.61	0.63	0.2
	0.46	0.48	0.51	0.54	0.57	0.7
2	0.70	0.72	0.74	0.76	0.77	0.2
	0.65	0.66	0.68	0.71	0.73	0.7
3	0.82	0.83	0.84	0.86	0.87	0.2
	0.78	0.79	0.81	0.83	0.84	0.7
4	0.92	0.92	0.93	0.94	0.94	0.2
	0.90	0.90	0.91	0.92	0.93	0.7
5	1.00	1.00	1.00	1.00	1.00	0.2
	1.00	1.00	1.00	1.00	1.00	0.7
6	1.07	1.07	1.06	1.06	1.05	0.2
	1.09	1.09	1.08	1.07	1.06	0.7
7	1.14	1.13	1.12	1.10	1.09	0.2
	1.17	1.16	1.15	1.13	1.12	0.7
8	1.19	1.18	1.16	1.15	1.13	0.2
	1.25	1.24	1.21	1.19	1.17	0.7
9	1.25	1.23	1.21	1.18	1.17	0.2
	1.32	1.30	1.27	1.24	1.22	0.7
10	1.30	1.27	1.25	1.22	1.20	0.2
	1.39	1.37	1.33	1.29	1.26	0.7
12	1.38	1.36	1.32	1.28	1.25	0.2
	1.51	1.48	1.43	1.38	1.34	0.7
14	1.46	1.43	1.38	1.33	1.30	0.2
	1.63	1.58	1.52	1.45	1.40	0.7
16	1.53	1.49	1.44	1.38	1.34	0.2
	1.73	1.68	1.61	1.52	1.46	0.7
18	1.60	1.55	1.49	1.42	1.38	0.2
	1.83	1.77	1.68	1.58	1.52	0.7
20	1.65	1.60	1.53	1.46	1.41	0.2
	1.92	1.85	1.75	1.64	1.56	0.7

Correction g_{1} to n^{*} due to a change in w_{2}.
Reference value of $w_{2}=0.05, p_{s}=p_{r}=0.01 . n=n^{*}+g_{1}$.

$100 w_{2}$	1.5	2.0	$\begin{array}{r} p_{2} / p_{r} \\ 3.0 \end{array}$	5.0	7.0	p_{1} / p_{r}
1	$\begin{aligned} & -125 \\ & -205 \end{aligned}$	$\begin{aligned} & -90 \\ & -125 \end{aligned}$	$\begin{aligned} & -60 \\ & -70 \end{aligned}$	$\begin{aligned} & -35 \\ & -35 \end{aligned}$	$\begin{aligned} & -25 \\ & -25 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
2	$\begin{aligned} & -\quad 70 \\ & -115 \end{aligned}$	$\begin{array}{r} -\quad 50 \\ -\quad 70 \end{array}$	$\begin{aligned} & -35 \\ & -40 \end{aligned}$	$\begin{aligned} & -20 \\ & -20 \end{aligned}$	$\begin{aligned} & -15 \\ & -15 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
3	$\begin{array}{r} -\quad 40 \\ -\quad 65 \end{array}$	$\begin{aligned} & -\quad 30 \\ & -\quad 40 \end{aligned}$	$\begin{aligned} & -20 \\ & -25 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
4	$\begin{aligned} & -\quad 20 \\ & -\quad 30 \end{aligned}$	$\begin{array}{r} -\quad 15 \\ -\quad 20 \end{array}$	$\begin{aligned} & -10 \\ & -10 \end{aligned}$	$\begin{aligned} & -5 \\ & -5 \end{aligned}$	$\begin{array}{r} -5 \\ -5 \end{array}$	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 0	0 0	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
6	$\begin{aligned} & 15 \\ & 25 \end{aligned}$	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	$\begin{array}{r} 5 \\ 10 \end{array}$	5 5	5 5	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
7	$\begin{aligned} & 25 \\ & 45 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	5 10	5 5	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
8	$\begin{aligned} & 40 \\ & 60 \end{aligned}$	$\begin{aligned} & 30 \\ & 40 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	5 10	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
9	$\begin{aligned} & 50 \\ & 80 \end{aligned}$	$\begin{aligned} & 35 \\ & 50 \end{aligned}$	$\begin{aligned} & 20 \\ & 25 \end{aligned}$	15 15	10 10	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
10	$\begin{aligned} & 55 \\ & 90 \end{aligned}$	$\begin{aligned} & 40 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	10 10	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
12	$\begin{array}{r} 75 \\ 120 \end{array}$	$\begin{aligned} & 50 \\ & 70 \end{aligned}$	$\begin{aligned} & 35 \\ & 40 \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	15 15	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
14	$\begin{array}{r} 85 \\ 140 \end{array}$	$\begin{aligned} & 60 \\ & 85 \end{aligned}$	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	25 25	15 15	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
16	$\begin{aligned} & 100 \\ & 160 \end{aligned}$	$\begin{array}{r} 70 \\ 100 \end{array}$	$\begin{aligned} & 45 \\ & 55 \end{aligned}$	$\begin{aligned} & 25 \\ & 30 \end{aligned}$	20 20	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
18	$\begin{aligned} & 110 \\ & 175 \end{aligned}$	$\begin{array}{r} 80 \\ 110 \end{array}$	50 60	30 30	20 20	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$
20	$\begin{aligned} & 120 \\ & 195 \end{aligned}$	$\begin{array}{r} 85 \\ 120 \end{array}$	$\begin{aligned} & 55 \\ & 65 \end{aligned}$	$\begin{aligned} & 30 \\ & 35 \end{aligned}$	20 25	$\begin{aligned} & 0.2 \\ & 0.7 \end{aligned}$

For $p_{s}=p_{r}=0.10$ the correction is $g_{1} / 10$ (rounded down).

$$
\begin{gathered}
\begin{array}{c}
\text { Summary of conversion formulas } \\
\text { to find }
\end{array} \\
(n, c) \text { corresponding to }\left(N, p_{r}, p_{s}, p_{1}, p_{2}, w_{2}\right) \\
\text { from }
\end{gathered} \begin{aligned}
& \left(n^{*}, c^{*}\right) \text { in the master table for }\left(N^{*}, p_{r 0}, p_{10}, p_{20}\right) . \\
& \text { For }\left\{\begin{array}{l}
p_{r} \leqq 0.05 \\
p_{r}>0.05
\end{array}\right\} \text { use master table with } p_{r 0}=\left\{\begin{array}{l}
0.01 \\
0.10
\end{array}\right. \\
& \lambda_{s}=\left(1+\frac{p_{s}-p_{r}}{w_{1}\left(p_{r}-p_{1}\right)}\right)^{-1} .
\end{aligned}
$$

Formula 1.

$$
\gamma_{2}=\frac{w_{2}\left(p_{2}-p_{r}\right)}{w_{1}\left(p_{r}-p_{1}\right)} \quad \text { and } \quad \lambda p_{r 0}=\frac{p_{2}+19 \gamma_{2} p_{1}}{1+19 \gamma_{2}} .
$$

Use

$$
N^{*}=N \lambda_{s} \lambda, \quad p_{r 0}, \quad p_{10}=p_{1} / \lambda, \quad p_{20}=p_{2} / \lambda
$$

as arguments to find $\left(n^{*}, c^{*}\right)$ in the master table.

$$
(n, c)=\left(n^{*} / \lambda, c^{*}\right) .
$$

If $\left(p_{10}, p_{20}\right)$ fall outside the tabulated range use formula 2.
Formula 2.

$$
\lambda=p_{r} / p_{r 0}, \quad \varrho_{1}=p_{1} / p_{r}, \quad \varrho_{2}=p_{2} / p_{r} .
$$

Use

$$
N^{*}=N \lambda_{s} \lambda f_{1}\left(w_{2}, \varrho_{1}, \varrho_{2}\right), \quad p_{r 0}, \quad p_{10}=\varrho_{1} p_{r 0}, \quad p_{20}=\varrho_{2} p_{r 0}
$$

as arguments to find $\left(n^{*}, c^{*}\right)$ in the master table.

$$
(n, c)=\left(\left(n^{*}+g_{1}\left(w_{2}, \varrho_{1}, \varrho_{2}\right)\right) / \lambda, c^{*}\right) .
$$

Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Skrifter Mat. Fys. Skr. Dan. Vid. Selsk. Bind 1 (kr. 141,00)

kr..

1. Brodersen, Svend, and Langseth, A.: The Infrared Spectra of Benzene, sym- Benzene- d_{3}, and Benzene- $\mathrm{d}_{6} .1956$ 14,00
2. Nörlund, N. E.: Sur les fonctions hypergéométriques d'ordre supérieur. 1956 15,00
3. Fröman, Per Olof: Alpha Decay of Deformed Nuclei. 1957 20,00
4. Brodersen, Svend: A Simplified Procedure for Calculating the Complete Har- monic Potential Function of a Molecule from the Vibrational Frequencies. 1957 10,00
5. Brodersen, Svend, and Langseth, A.: A Complete Rule for the Vibrational Frequencies of Certain Isotopic Molecules. 1958 6,00
6. Källén, G., and Wightman, A.: The Analytic Properties of the Vacuum Ex- pectation Value of a Product of three Scalar Local Fields. 1958 15,00
7. Brodersen, Svend, and Langseth, A.: The Fundamental Frequencies of all the Deuterated Benzenes. Application of the Complete Isotopic Rule to New Experi- mental Data. 1959 10,00
8. Mottelson, Ben R., and Nilsson, Sven Gösta: The Intrinsic States of Odd-A Nuclei having Ellipsoidal Equilibrium Shape. 1959 22,00
9. Källén, G., and Wilhelmsson, H.: Generalized Singular Functions. 1959 6,00
10. Møller, C.: Conservation Laws and Absolute Parallelism in General Relativity. 1961 15,00
11. Soloviev, V. G.: Effect of Pairing Correlation on Energies and β-Transition Proba- bilities in Deformed Nuclei. 1961 8,00
Bind 2
(uafsluttet / in preparation)
12. Higgins, Joseph: Theory of Irreversible Processes. I. Parameters of Smallness. 1962 17,00
13. Gallagher, C. J., Jr., and Soloviev, V. G.: Two-Quasi-Particle States in Even- Mass Nuclei with Deformed Equilibrium Shape. 1962 18,00
14. Mang, H. J., and Rasmussen, J. O.: Shell Model Calculations of Alpha Decay Rates of Even-Even Spheroidal Nuclei. 1962 12,00
15. Pellegrini, C., and Plebanski, J.: Tetrad Fields and Gravitational Fields. 1963 14,00
16. Nörlund, N. E.: The Logarithmic Solutions of the Hypergeometric Equation. 1963 23,00
17. Lütken, Hans, and Winther, Aage: Coulomb Excitation in Deformed Nuclei. 1964 9,00
18. Bartlett, James H.: The Restricted Problem of Three Bodies. 1964 13,00
19. van Winter, Clasine: Theory of Finite Systems of Particles. I. The Green Func- tion. 1964. 20,00
20. Gyldenkerne, Kjeld: A Three-Dimensional Spectral Classification of G and K Stars. 1964 14,00
21. van Winter, Clasine: Theory of Finite Systems of Particles. II. Scattering Theory.(In preparation).

Bind 3
(uafsluttet / in preparation)

On direct application to the agent of the Academy, Ejnar Munksgaard, Publishers, 6 Nörregade, Köbenhavn K., a subscription may be taken out for the series Matematiskfysiske Skrifter. This subscription automatically includes the Matematisk-fysiske Meddelelser in 8vo as well, since the Meddelelser and the Skrifter differ only in size, not in subject matter. Papers with large formulae, tables, plates etc., will as a rule be published in the Skrifter, in 4to.

For subscribers or others who wish to receive only those publications which deal with a single group of subjects, a special arrangement may be made with the agent of the Academy to obtain the published papers included under one or more of the following heads: Mathematics, Physics, Chemistry, Astronomy, Geology.

In order to simplify library cataloguing and reference work, these publications will appear without any special designation as to subject. On the cover of each, however, there will appear a list of the most recent paper dealing with the same subject.

The last published numbers of Matematisk-fysiske Skrifter within the group of Mathematics are the following:

Vol. 1, no. 2. - Vol. 2, no. 5. - Vol. 3, no. 2.

[^0]: For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use ($n+5, c$) as optimum plan.

[^1]: For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+5, c)$ as optimum plan.

[^2]:

[^3]: For N between two intervals adjacent in the table find (n, c) for the first of these intervals and use $(n+5, c)$ as optimum plan.

[^4]:

